Answer:
New temperature T2 = 707.5 K (Approx.)
Explanation:
Given:
Old pressure P1 = 2 atm
Old temperature T1 = 283 K
New Pressure P2 = 5 atm
Find:
New temperature T2
Computation:
Using Gay-Lussac law;
P1 / T1 = P2 / T2
So,
2 / 283 = 5 / T2
New temperature T2 = 707.5 K (Approx.)
Pajamas
Out fit for each day + 2 extra
Athletic clothes
Light hoodie
Bathing suit + cover up
Underwear
Socks
Bra's
Sunscreen
Moisturizer
Makeup
Makeup remover
Shampoo + conditioner
Shaving cream
Razor
Medicine (pain meds, etc.)
Lotion
Chapstick
Retainer (if you have 1)
Tooth brush + toothpaste
Deodorant
Monthly Items
Phone charger
Computer + computer charger
Camera + camera charger
Headphones
Water bottle
Snacks
Perfume
Book
Glasses
Purses
Jewelry
Watch
Wallet
Hat
Sunglasses
Hand sanitizer
Tennis shoes
Walking shoes
Flip flops
Blow dryer
Straightner
Hair clips
Hair ties
Hair brush
Hair spray
Heat protection
Have music + shows/ movies downloaded
Hope this helps you take off anything you don't want or anything you don't need
You may want to ask the questions seperatly more likely for someone to answer
At room temperature, O2 is in gaseous state.
a gas has no definite volume or definite shape. It occupies volume of container and attains shape of container only.
Thus
It has no definite volume and takes the shape of its container.
Its particles move fast enough to overcome the attraction between them.: the gas molecules have minimum intermolecular interactions and have high kinetic energy.
It has more energy than it would at a cooler temperature: the kinetic energy of gas molecules increases with increase in temperature. Thus the energy increases with temperature and decreases with decrease in temperature.
The system is isothermal, so we use the formula:
(delta)G = (delta)H - T (delta) S
Plugging in the given values:
(delta)G = -220 kJ/ mol - (1000K) (-0.05 kJ/mol K)
(delta)G = -170 kJ/mol
If we take a basis of 1 mol, the answer is
D. -170 kJ