<span>The volume of iron is obtained from the density formula (density= mass/ volume) given the density and mass. In this case, 4,540 grams of iron and a density of 7.86 g/ml are given. The volume obtained from formula is 493.64 ml or 5.78 dL. </span>
C = 12 g
O = 16 g
H = 1 g
<h3>Further explanation
</h3>
Conservation of mass stated that
<em>In a closed system, the masses before and after the reaction are the same
</em>
we can calculate the mass of each atom in the compound :
O in O₂ :
mass O₂ = 32
mass O = 32 : 2 = 16 g
H in H₂O
mass H₂O = 18
mass 2.H + mass O = 18
mass 2.H + 16 = 18
mass 2.H=2
mass H = 1 g
C in CH₄
mass CH₄ = 16
mass C + mass 4.H = 16
mass C + 4.1=16
mass C = 12 g
or we can use formula :
Mass of a single C :

Calculate the root mean square velocity of nitrogen molecules at 25°C.
297 m/s
149 m/s
515 m/s
729 m/s
Answer:
1750L
Explanation:
Given
Initial Temperature = 25°C
Initial Pressure = 175 atm
Initial Volume = 10.0L
Final Temperature = 25°C
Final Pressure = 1 atm
Final Volume = ?
This question is an illustration of ideal gas law.
From the given parameters, the initial temperature and final temperature are the same; this implies that the system has a constant temperature.
As such, we'll make use of Boyle's Law to solve this;
Boyle's Law States that:
P₁V₁ = P₂V₂
Where P₁ and P₂ represent Initial and Final Pressure, respectively
While V₁ and V₂ represent Initial and final volume
The equation becomes
175 atm * 10L = 1 atm * V₂
1750 atm L = 1 atm * V₂
1750 L = V₂
Hence, the final volume that can be stored is 1750L