The maximum number of turning points in a cubic function is 2.
In this case,

The discriminant is

, which means the derivative has no real roots. This means there are no critical points and thus no turning points/relative extrema.
Answer:
<u><em>F(x)= 5*[
+ (a*b)*
+ a*b*x + C.</em></u>
Step-by-step explanation:
<u><em>First step we aplicate distributive property to the function.</em></u>
<u><em>5*(x+a)*(x+b)= 5*[
+x*b+a*x+a*b]</em></u>
<u><em>5*[
+x*(b+a)+a*b]= f(x), where a, b are constant and a≠b</em></u>
<u><em>integrating we find ⇒∫f(x)*dx= F(x) + C, where C= integration´s constant</em></u>
<u><em>∫^5*[
+x*(a+b)+a*b]*dx, apply integral´s property</em></u>
<u><em>5*[∫
dx+∫(a*b)*x*dx + ∫a*b*dx], resolving the integrals </em></u>
<u><em>5*[
+ (a*b)*
+ a*b*x</em></u>
<u><em>Finally we can write the function F(x)</em></u>
<u><em>F(x)= 5*[
+ (a*b)*
+ a*b*x ]+ C.</em></u>
F(x) = 2x and G(x) = x^2 + 2
(G - F)(x) just means we subtract the functions from each other.
x^2 + 2 - 2x
Let's rearrange the expression
x^2 - 2x + 2
Answer:
(-8.5,9)
Step-by-step explanation:
((-8+(-9))/2=-8.5
(7+11)/2=9
(-8.5,9)
Answer:
<em>5x-y=9, y=5x+19 write both equations in same formy=5x-9 for the first and havey=5x+19 for the second. These are two parallel lines with different intercepts. They do not intersect or coincide. No </em><em>solutions</em>
<em> </em>
<em>and y=6x+14, 12x-2y=-28 write both equations in same formy=6x+142y=12x+28 or y=6x+14. They are the same line. The solution is all of the points on the line.</em>
Step-by-step explanation:
<em>I </em><em>hope</em><em> it</em><em> will</em><em> help</em><em> you</em><em> have</em><em> a</em><em> great</em><em> day</em><em> bye</em><em> and</em><em> Mark</em><em> brainlist</em><em> if</em><em> the</em><em> answer</em><em> is</em><em> correct</em><em> </em><em>I </em><em>am </em><em>sorry</em><em> </em><em>if </em><em>the </em><em>answer</em><em> is</em><em> </em><em>worng</em><em> </em>
<em>
</em>
<em>#</em><em>c</em><em>a</em><em>r</em><em>r</em><em>y</em><em> </em><em>on </em><em>learning</em>