Answer:
1st – Place the film canister on the <u>scale</u>.
2nd – Slide the large <u>weight </u>to the right until the arm drops below the line and then move it back one notch.
3rd – Repeat this process with the <u>top</u> weight. When the arm moves below the line, back it up one groove.
4th – Slide the <u>small </u>weight on the front beam until the <u>lines</u> match up.
5th – Add the amounts on each beam to find the total <u>mass </u>to the nearest tenth of a gram.
Explanation:
The triple beam balance is an instrument that is used in measuring the mass of substances to a very high degree of precision. The reading error is given by ±0.05 grams. The triple beam balance as the name implies has three beams that measure substances of different mass levels.
The beams are categorized as small, medium, and large. There is a balance on which the substance to be weighed is placed directly upon. To use this measuring device, the procedures mentioned above are followed.
Answer:
ccvtesgdujtdchgdrgggggggfrrrtyfaasdddfffghgdshh
The forward force you exert on the fish and your backward action will allow you to reach the shore.
<h3>
Newton's third law of motion</h3>
Newton's third law of motion states that for every action, there is an equal and opposite reaction.
Fa = -Fb
Let's assume the fish is held in the hook, this will give you the opportunity to throw the fish forward while still holding it.
When the the fish is thrown forward, you will move backwards with an equal force based on Newton's third law. Your backward momentum towards the shore will help to maintain equal linear momentum between you and the fish.
Thus, this forward force of the fish and your backward action will allow you to reach the shore.
Learn more Newton's third law of motion here: brainly.com/question/25998091
Answer:
Red giant or super giant → very cool but very luminous
→ found in the upper right of the H-R diagram.
Main sequence →The majority of stars in our galaxy
→ Sun, for example
→ a very hot and very luminous star
White dwarfs → very hot but very dim
→ not much larger in radius than earth
Explanation:
Giant:
When the stars run out of their fuel that is hydrogen for the nuclear fusion reactions then they convert into Giant stars.That's why they are very cool. Giant stars have the larger radius and luminosity then the main sequence stars.
Main Sequence:
Stars are called main sequence stars when their core temperature reaches up to 10 million kelvin and their start the nuclear fusion reactions of hydrogen into helium in the core of the star. That is why they are very hot and luminous. For example sun is known as to be in the stage of main sequence as the nuclear fusion reactions are happening in its core.
White dwarfs:
When the stars run out of their fuel then they shed the outer layer planetary nebula, the remaining core part that left behind is called as white dwarf. It's the most dense part as the most of the mass is concentrated in this part.
The capacitance is defined as the maximum charge stored in a capacitor, Q, divided by the voltage applied, V:

The capacitor is initially charged with the battery of 108 V, so the the initial charge on the capacitor can be found by re-arranging the previous formula: