Answer:
Vd = 1.597 ×10⁻⁴ m/s
Explanation:
Given: A = 3.90×10⁻⁶ m², I = 6.00 A, ρ = 2.70 g/cm³
To find:
Drift Velocity Vd=?
Solution:
the formula is Vd = I/nqA (n is the number of charge per unit volume)
n = No. of electron in a mole ( Avogadro's No.) / Volume
Volume = Molar mass / density ( molar mass of Al =27 g)
V = 27 g / 2.70 g/cm³ = 10 cm³ = 1 × 10 ⁻⁵ m³
n= (6.02 × 10 ²³) / (1 × 10 ⁻⁵ m³)
n= 6.02 × 10 ²⁸
Now
Vd = (6A) / ( 6.02 × 10 ²⁸ × 1.6 × 10⁻¹⁹ C × 3.9×10⁻⁶ m²)
Vd = 1.597 ×10⁻⁴ m/s
Answer:
²₁H + ³₂He —> ⁴₂He + ¹₁H
Explanation:
From the question given above,
²₁H + ³₂He —> __ + ¹₁H
Let ⁿₐX be the unknown.
Thus the equation becomes:
²₁H + ³₂He —> ⁿₐX + ¹₁H
We shall determine, n, a and X. This can be obtained as follow:
For n:
2 + 3 = n + 1
5 = n + 1
Collect like terms
n = 5 – 1
n = 4
For a:
1 + 2 = a + 1
3 = a + 1
Collect like terms
a = 3 – 1
a = 2
For X:
n = 4
a = 2
X =?
ⁿₐX => ⁴₂X => ⁴₂He
Thus, the balanced equation is
²₁H + ³₂He —> ⁴₂He + ¹₁H
3 protons should be your answer
Voltage = current(I) * resistance (R)
V = 18
R = 6
18 = I * 6
I = 18/6 = 3 Amps or D