A 20 L sample of the gas contains 8.3 mol N₂.
According to <em>Avogadro’s Law,</em> if <em>p</em> and <em>T</em> are constant
<em>V</em>₂/<em>V</em>₁ = <em>n</em>₂/<em>n</em>₁
<em>n</em>₂ = <em>n</em>₁ × <em>V</em>₂/<em>V</em>₁
___________
<em>n</em>₁ = 0.5 mol; <em>V</em>₁ = 1.2 L
<em>n</em>₂ = ?; <em>V</em>₂ = 20 L
∴<em>n</em>₂ = 0.5 mol × (20 L/1.2 L) = 8.3 mol
Answer;
C7H14O2
Solution;
Isobutyl contains , oxygen, carbon and hydrogen (total mass is 1.152 g)
Mass of carbon = 12/44 × 2.726 g
= 0.743455 g
Mass of Hydrogen = 2/18 × 1.116 g
= 0.124 g
Mass of oxygen = 1.152 - (0.7435 + 0.124)
= 0.2845 g
Moles of carbon ; 0.7435/12 = 0.06196 moles
Moles of hydrogen; 0.124/1 = 0.124 moles
Moles of oxygen; 0.2845/16 = 0.01778 moles
Ratios ; 0.06196/0.01778 ; 0.124/0.01778 : 0.01778/0.01778
= 3.5 : 7.0 : 1
To make them whole numbers ; we multiply the ratios by 2 to get;
(3.5 : 7.0 : 1 )2 = 7 : 14 : 2
Thus, the empirical formula of Isobutyl propionate is C7H14O2
2.77mg caffeine / 1oz12oz / 1canLethal dose: 10.0g caffeine = 10,000mg caffeine First, find how much caffeine is in one can of soda, then divide that amount by the lethal dose to find the number of cans. (2.77mg caffeine / 1oz) * (12oz / 1can) = 33.24mg caffeine / 1can. (10,000mg caffeine) * (1can / 33.24mg caffeine) = 300.84 cans. Since we can't buy parts of a can of soda, then we have to round up to 301 cans. Notice how all the values were set up as ratios and how the units cancelled.
?? Is that the whole question?
The heat cause 300g water temperature increase from 20 to 26 celcius. The heat transferred would be: 300g * (26 °C -20 °C) *4.2 joule/gram °C= 7560J
The unknown substance is added to the water, so its final temperature should be the same as the water. The calculation would be:
7560J= 124g * (100-26)* specific heat
specific heat= 7560J / 124g / 74 °C= 0.8238 J/gram °C