Matematically speaking, maybe because:
The number of substances = number of elements + number of different combinations of those elements
The dissolution of borax in water is a temperature dependent reaction. With the higher temperature, the salt dissolve quickly.
<h3>What is borax?</h3>
Borax is the hydrate salt of boric acid. It is white and widely used in cleaning and in laundry detergent.
Borax is a salt that will dissolve in water at almost any temperature, with the exception of steam and ice.
However, as with any salt, the higher the temperature, the faster the salt dissolves, so speed is dependent on temperature. It will dissolve in cold water, but it will take longer.
Thus, the dissolution of borax in water is a temperature dependent reaction.
Learn more about borax
brainly.com/question/14724418
#SPJ4
The given above pretty much states already that with the presence of the calcium carbonate which acts as the buffer will allow the solution to withstand changes in acidity. The greater the amount, the higher chances that it will be able to withstand the said changes. Therefore, if Lake X had greater ppm of CaCO3 then, it will be able to withstand greater amount of acid rain.
If the refrigerator has no room to cool the meat that you've just cooked, then you should clear it with other stuff or food that has not been consumed for days. There might be some goods that are not good for consumption anymore even though it has been placed in the ref for a couple of days. Hope this answers your question.
According to the reversible reaction equation:
2Hi(g) ↔ H2(g) + i2(g)
and when Keq is the concentration of the products / the concentration of the reactants.
Keq = [H2][i2]/[Hi]^2
when we have Keq = 1.67 x 10^-2
[H2] = 2.44 x 10^-3
[i2] = 7.18 x 10^-5
so, by substitution:
1.67 x 10^-2 = (2.44 x 10^-3)*(7.18x10^-5)/[Hi]^2
∴[Hi] = 0.0033 M