A) 4.7 cm
The formula for the angular spread of the nth-maximum from the central bright fringe for a diffraction from two slits is

where
n is the order of the maximum
is the wavelength
is the distance between the slits
In this problem,
n = 5


So we find

And given the distance of the screen from the slits,

The distance of the 5th bright fringe from the central bright fringe will be given by

B) 8.1 cm
The formula to find the nth-minimum (dark fringe) in a diffraction pattern from double slit is a bit differente from the previous one:

To find the angle corresponding to the 8th dark fringe, we substitute n=8:

And the distance of the 8th dark fringe from the central bright fringe will be given by

Answer:
D. The momentum of Car B is three times as great in magnitude as that of car A.
Explanation:
I majored in Physics
Answer:
1703.24J
Explanation:
Given parameters:
Mass of brick = 7.9kg
Height of building = 22m
Unknown:
Potential energy of the brick = ?
Solution:
The potential energy of a body is the energy at rest of the body. Mathematically;
P.E = mgh
m is the mass of the brick
g is the acceleration due to gravity
h is the height of the building
Insert the given parameters and solve;
P.E = 7.9 x 9.8 x 22 = 1703.24J
Answer:

Work done to bring three electrons from a great distance apart to 3.0×10−10 m from one another (at the corners of an equilateral triangle) is 
Explanation:
The potential energy is given by:
U=Q*V
where:
Q is the charge
V is the potential difference
Potential Difference=V=
So,

Where:
k is Coulomb Constant=
q is the charge on electron=
r is the distance=
For 3 Electrons Potential Energy or work Done is:


Work done to bring three electrons from a great distance apart to 3.0×10−10 m from one another (at the corners of an equilateral triangle) is 
Answer:
A
Explanation:
I believe it is A because reflection is usually like a mirror or in water the other ones described are refraction or conversion. Hope this helps! :)