Answer:
$2063.44
Step-by-step explanation:
1st week = $439.50
2nd and 3rd week = 62 hours and each hour = $22.79
Total amount earned in 2nd and 3rd week = 62 * 22.79 = $1412.98
4th week = 48% of what she earned in her first week = 48% of $439.50
4th week = (48 / 100) * 439.50 = $210.96
Total amount she earned = 1st week + 2nd & 3rd week + 4th week
Total amount = $439.50 + $1412.98 + $210.96
Total amount = $2063.44
She earned a total of $2063.44
Answer:
Step-by-step explanation:
let side of cube=x cm
volume=x³ cm³
again side=(x-3) cm
volume=(x-3)³ cm³
x³-(x-3)³=1385
(a³-b³)=(a-b)(a²+ab+b²)
(x-x+3){x²+x(x-3)+(x-3)²}=1385
3(x^2+x²-3x+x²-6x+9)=1385
3(3x²-9x+9)=1385
9x²-27x+27=1385
9x²-27x+27-1385=0
9x²-27x-1358=0

The function appears to be neither odd nor even
We have been given that the distribution of the number of daily requests is bell-shaped and has a mean of 38 and a standard deviation of 6. We are asked to find the approximate percentage of lightbulb replacement requests numbering between 38 and 56.
First of all, we will find z-score corresponding to 38 and 56.


Now we will find z-score corresponding to 56.

We know that according to Empirical rule approximately 68% data lies with-in standard deviation of mean, approximately 95% data lies within 2 standard deviation of mean and approximately 99.7% data lies within 3 standard deviation of mean that is
.
We can see that data point 38 is at mean as it's z-score is 0 and z-score of 56 is 3. This means that 56 is 3 standard deviation above mean.
We know that mean is at center of normal distribution curve. So to find percentage of data points 3 SD above mean, we will divide 99.7% by 2.

Therefore, approximately
of lightbulb replacement requests numbering between 38 and 56.
Answer:109.20
Step-by-step explanation:simple answer son