First one: If the leading coeff. is negative, the graph begins in Quadrant III and ends in Quadrant IV. It's an even function. The fourth graph represents it.
If the leading coeff. is positive, but everything else remains the same, the graph opens upward, beginning in Q II and ending in Q I.
X² + x - 12 / x² - x - 20 ÷ 3x² - 24x + 45 / 12x² - 48x - 60
x² + x - 12 / x² - x - 20 * 12x² - 48x - 60 / 3x² - 24x + 45
<u>(x² + x - 12)(12x² - 48x - 60)</u>
(x² - x - 20)(3x² - 24x + 45)
<span><u>12x^4 - 48x³ - 60x² + 12x³ - 48x² - 60x - 144x² + 576x + 720</u>
</span>3x^4 - 24x³ + 45x² - 3x³ + 24x² - 45x - 60x² + 480x - 900
<span>
<u>12x^4 - 48x³ + 12x³ - 60x² - 48x² - 144x² - 60x + 576x + 720</u></span>
3x^4 - 24x³ - 3x³ + 45x² + 24x² - 60x² - 45x + 480x - 900
<u>12x^4 - 36x³ - 252x² + 516x + 720</u>
3x^4 - 27x³ + 9x² + 435x - 900
<u>12(x^4 - 3x³ - 21x² + 43x + 60) </u>
3(x^4 - 9x³ + 3x² + 145x + 300)
<u>4(</u><span><u>x^4 - 3x³ - 21x² + 43x + 60) </u>
</span><span> (x^4 - 9x³ + 3x² + 145x + 300)</span>
The equations x+5x=16
and x+5x+25=16
No, the equations are not equal. In order for an equation to be equal the equation x+5x=16 contains 25 less than the second equation.
Answer:
Q = (4, - 1)
Step-by-step explanation:
DF is the diameter of the circle with center Q.
So, Q is the midpoint of DF.
By mid point formula.
