Hello!
<h3><em><u>Answers</u></em></h3>
1.
Simplest form: 
2.
Simplest form: 
3.
Simplest form: 
4.
Simplest form: 
5.
Simplest form: 
6.
Simplest form: 
<h3><em><u>Explanation:</u></em></h3>
Simply add the numerators of the like fractions together. The denominators remain the same.
Answer:
64.3738
Step-by-step explanation:
The surface area of a cylindrical can is equal to the sum of the area of two circles and the body of the cylinder: 2πr2 + 2πrh. volume is equal to π<span>r2h.
V = </span>π<span>r2h = 128 pi
r2h = 128
h = 128/r2
A = </span><span>2πr2 + 2πrh
</span>A = 2πr2 + 2πr*(<span>128/r2)
</span>A = 2πr2 + 256 <span>π / r
</span><span>
the optimum dimensions is determined by taking the first derivative and equating to zero.
dA = 4 </span>πr - 256 <span>π /r2 = 0
r = 4 cm
h = 8 cm
</span><span>
</span>
Answer:
40 feet
Step-by-step explanation:
the diameter is just Rx2 (R being the radius)
Answer:
Thus we find that velocity vector at time t is
(5t+15, 5t^2/2, 4t^2)
Step-by-step explanation:
given that acceleration vector is a funciton of time and at time t

v(t) can be obtained by integrating a(t)
v(t) = 
Thus we use the fact that acceleration is derivative of velocity and velocity is antiderivative of acceleration.
The arbitary constant normally used for integration C is here C vector = initial velocity (u0,v0,w0)
Position vector can be obtained by integrating v(t)
Thus we find that velocity vector at time t is
(5t+15, 5t^2/2, 4t^2)