True because it has to be an capital letter because it’s scientific
Answer:
The answer to your question is: A) temperature at which a material catches on fire.
Explanation:
(A) temperature at which a material catches on fire this is a chemical property, so this is the right answer to your question.
(B) color physical property
(C) conductivity physical property
(D) hardness physical property
Answer:
The mol fraction of cyclohexane in the liquid phase is 0.368
Explanation:
Step 1: Data given
Mass of cyclohexane = 25.0 grams
Mass of 2-methylpentane = 44.0 grams
Temperature = 35.0 °C
The pressure of cyclohexane = 150 torr
The pressure of 2-methylpentane = 313 torr
The pressure we only need for the mole fraction in gas phase.
Step 2: Calculate moles of cyclohexane
Moles cyclohexane = mass cyclohexane / molar mass
Moles cyclohexane = 25.0 g / 84 g/mol = 0.298 mol of cyclohexane
Step 3: Calculate moles of 2-methylpentane
Moles = 44.0 grams / 86 g/mol = 0.512 mol of 2-methylpentane
Step 4: Calculate mole fraction of cyclohexane in the liquid phase
Mole fraction of C6H12:
0.298 / (0.298 + 0.512) = 0.368
The mol fraction of cyclohexane in the liquid phase is 0.368
Answer:
Gallium is NOT a transition metal.
Explanation:
1. Titanium is a Transition metal However Gallium is NOT. Gallium is a main group metal, It belongs to group 3 - Boron Group.
All the remaining statements are correct.
Answer:
Oxidation states are used in chemistry solutions. It is a bond in which electron transfers easily from one nucleus to another nucleus.
Explanation:
- Oxidation-reduction reactions have some rules.
- The oxidation state is 0 at an uncombined bond.
- The bond of oxidation reduction is +1 in alkeli metal.
- The bond in two metal is +2
- The oxidation reduction state at helogens is -1. It does not happened always.
- The oxygen bond in oxidation and reduction is -2.
- The sum of the oxidation state is equal to the compound charges.
- In this process the changes occur for any elements. Redox could be occur. Its oxidized and reduction reaction can be seen in this process.