Answer:
1-b
2-weaker(option is incorrect)
3-a
Explanation:
1-b because iodine is more electronegative because of this negative on iodine will be more stable as negative charge on more electronegative element is more stable.
2-weaker as size of Te (Tellurium) is greater than S (sulphur) so bond length of H-Te is larger than H-S and therefore bond energy will be lesser and can easily give hydrogen in case of H-Te. as bond energy is inversly proportional to bond length.
3-a hydrogen has more negative electron affinity so hydrogen will have -1 charge and it will behave as a electron donar atom that is basic not acidic hence NaH is not acidic.
Answer:
The radius of the centrifuge.
Explanation:
Hello,
Since the radius of the centrifuge is just a design parameter, it wouldn't be a cause of failure because it is used to know how many tubes could be fitted in into the centrifuge. On the other hand, keeping you attention away from other factors could turn into a failure as long as the sample could be poured down or just turn out inadequate for the expected results.
Best regards.
Answer :
2 red : 2 white
Explanation:
;)long story short
hetro with hetro gives 3:1
hetro with recessive gives 1:1
Hetro :- ( Rr) one capital letter and one small
Recessive :- (rr) two small leters
Alpha helix and beta sheets are the secondary structure of protein
<span>D) recycling ;)
Waste Management's Aerobic-Anaerobic Bioreactor* is designed to accelerate waste degradation by combining attributes of the aerobic and anaerobic bioreactors. The objective of the sequential aerobic-anaerobic treatment is to cause the rapid biodegradation of food and other easily degradable waste in the aerobic stage in order to reduce the production of organic acids in the anaerobic stage resulting in the earlier onset of methanogenesis. In this system the uppermost lift or layer of waste is aerated, while the lift immediately below it receives liquids. Landfill gas is extracted from each lift below the lift receiving liquids. Horizontal wells that are installed in each lift during landfill construction are used convey the air, liquids, and landfill gas. The principle advantage of the hybrid approach is that it combines the operational simplicity of the anaerobic process with the treatment efficiency of the aerobic process. Added benefits include an expanded potential for destruction of volatile organic compounds in the waste mass. (*US Patent 6,283,676 B1)</span>