The density of the sample : 0.827 g/L
<h3>Further explanation</h3>
In general, the gas equation can be written

where
P = pressure, atm , N/m²
V = volume, liter
n = number of moles
R = gas constant = 0.082 l.atm / mol K (P= atm, v= liter),or 8,314 J/mol K (P=Pa or N/m2, v= m³)
T = temperature, Kelvin
n= 1 mol
MW Neon = 20,1797 g/mol
mass of Neon :

The density of the sample :

or We can use the ideal gas formula ta find density :

Answer:
Explanation:
Given the details, we can say that
Pure methanol is a volatile solvent as the vapour pressure has a high value. This means that methanol - methanol intermolecular forces are weak in comparisson to water - water forces. When having about 30% of water in a methanol mixture, the mixture Pv decreased, showing that it is not a volatile mixture, so then there are strong intermolecular interactions between methanol - water, part of it due to the hydrogen bonds.
Answer:
Triacylglycerols (triglycerides) are non-polar or hydrophobic molecules
Glycerophospholipids (phosphoglycerides) are polar or hydrophilic
Explanation:
Triacylglycerides (TGs) are esters synthesized by the esterification of three molecules of glycerol and fatty acid, and this is essentially by the replacement of the three hydroxyl groups on glycerol with three fatty acids. This removes the hydrophilic property from the glycerol molecule hence TGs are only soluble in non-polar solvents like alcohol and benzene, and TGs are therefore the storage forms of fats in adipose tissues.
Glycerophospholipids are formed by the addition of two hydrophobic fatty acid groups and one phosphoric acid (phosphate group) to glycerol (alcohol) leaving a hydrophilic head (phosphate end) and a hydrophobic tail (fatty acid ends). This amphipathic property of this molecule makes it a suitable molecule for membrane structures, especially of cells (lipid bi-layer), with an arrangement where the hydrophilic side interacts with the aqueous environment, while the hydrophobic side makes contact with the non-aqueous environment.
The atomic mass of the metal.(M) = 51 g/mol
<h3>Further explanation</h3>
Given
32% of oxygen
Required
the atomic mass of the metal.
Solution
An oxide of trivalent metal : M₂O₃(Ar O = 16 g/mol)
The molar mass of metal oxide = 2M+16.3=2M+48
32% of oxygen, then :
32% x 2M+48 = 48
0.32(2M+48)=48
0.64M+15.36=48
0.64M=32.64
M=51