Answer:
Explanation:
Use the ideal gas equation:

Where:
- p is pressure: 0.950atm
- V is volume: unknown
- n is number of moles: unknown
- R is the universal constat of gases: 0.08206 atm.liter/ (K.mol)
- T is the absolute temperature: 345K
Use the <em>molar mass</em> of the gas to include the density in the formula:
- molar mass = mass in grams / number of moles
- ⇒ mass in grams = number of moles × molar mass
- density = mass in grams / volume
- ⇒ density = number of moles × molar mass / volume
- density = (n/V) × molar mass
- ⇒ n/V = density / molar mass
Clear n/V from the gas ideal equation and subsittute with density/molar mass:
- density / molar mass = n/V
- density/molar mass = p/(RT)
- molar mass = density × RT / p
Now you can subsitute the data:
molar mass = (3.50g/liter) × 0.08206 atm.liter/(K.mol) × 345K / 0.950 atm
- Round to the nearest whole number: 104g/mol ← answer
Answer:
Other comparisons of the legislative process in both chambers shows that:
In both House and Senate: Committees review and mark up bills.
In the House of Representatives: Bills are introduced by the reading clerk.
In Senate: Bills can be filibustered.
In Senate: Only related amendments can be attached to bills.
In both House and Senate: Unrelated riders can be attached to bills.
((((((((((((((:
Answer:
Based on the temperature and rainfall, it is the tropical
Answer:
2.51 Angstroms
Explanation:
For a particle in a one dimensional box, the energy level, En, is given by the expression:
En = n²π² ħ² / 2ma²
where n is the energy level, ħ² is Planck constant divided into 2π, m is the mass of the electron ( 9.1 x 10⁻³¹ Kg ), and a is the length of the one dimensional box.
We can calculate the change in energy, ΔE, from n = 2 to n= 3 since we know the wavelength of the transition ( ΔE = h c/λ ) and then substitute this value for the expresion of the ΔE for a particle in a box and solve for the length a.
λ = 207 nm x 1 x 10⁻⁹ m/nm = 2.07 x 10⁻⁷ m ( SI units )
ΔE = 6.626 x 10⁻³⁴ J·s x 3 x 10⁸ m/s / 2.07 x 10⁻⁷ m
ΔE = 9.60 x 10⁻¹⁹ J
ΔE(2⇒3) = ( 3 - 2 ) x π² x ( 6.626 x 10⁻³⁴ J·s / 2π )² / ( 2 x 9.1 x 10⁻³¹ Kg x a² )
9.60 x 10⁻¹⁹ J = π² x( 6.626 x 10⁻³⁴ J·s / 2π )² / ( 2 x 9.1 x 10⁻³¹ Kg x a² )
⇒ a = 2.51 x 10⁻¹⁰ m
Converting to Angstroms:
a = 2.51 x 10⁻¹⁰ m x 1 x 10¹⁰ Angstrom / m = 2.51 Angstroms
Mass = 63.5 grams
density = 0.818 g/mL
D = m / V
0.818 = 63.5 / V
V = 63.5 / 0.818
V = 77.628 mL
hope this helps!