9514 1404 393
Answer:
a = 3, b = -8
Step-by-step explanation:
Solving the first equation for y, we get ...
2y +16 = 6x . . . . . given
y = 8 +3x . . . . . . . divide by 2
y = 3x -8 . . . . . . . subtract 8
In order for the system of equations to have infinitely many solutions, the second equation must be the same as this:
y = ax +b
a = 3, b = -8
Wait what's the question tho?
is it if this point is on the line?
cause it's not
-y=mx+b
3=-6(6)-3
-3=-36-3
-3 does not equal -39
hence, point is not on the line
Answer:
pretty sure its -2,3 :)
Step-by-step explanation:
Answer:
2) 4/5
3) 3
Step-by-step explanation:
2) 4/8-3=4/5
3)5x-4=3x+2
2x=6
x=3
Step-by-step answer:
The domain of log functions (any legitimate base) requires that the argument evaluates to a positive real number.
For example, the domain of log(4x) will remain positive when x>0.
The domain of log_4(x+3) requires that x+3 >0, i.e. x>-3.
Finally, the domain of log_2(x-3) is such that x-3>0, or x>3.