Answer: 3^2 * 3^8
Step-by-step explanation: 3^(4-2) * 3^(5+3)
Answer:
Do you want to be extremely boring?
Since the value is 2 at both 0 and 1, why not make it so the value is 2 everywhere else?
is a valid solution.
Want something more fun? Why not a parabola?
.
At this point you have three parameters to play with, and from the fact that
we can already fix one of them, in particular
. At this point I would recommend picking an easy value for one of the two, let's say
(or even
, it will just flip everything upside down) and find out b accordingly:
Our function becomes
Notice that it works even by switching sign in the first two terms: 
Want something even more creative? Try playing with a cosine tweaking it's amplitude and frequency so that it's period goes to 1 and it's amplitude gets to 2: 
Since cosine is bound between -1 and 1, in order to reach the maximum at 2 we need
, and at that point the first condition is guaranteed; using the second to find k we get 

Or how about a sine wave that oscillates around 2? with a similar reasoning you get

Sky is the limit.
Answer:
-5x³ -5x² -9x - 4
Step-by-step explanation:
(-6x³-4x²-8)+(x³-x²-9x+4)
Add the like terms.
-6x³ and x³ are like terms. -6x³ + x³ = -5x³
-4x² and -x² are like terms. -4x² - x² = -5x²
-8 and 4 are like terms. -8 + 4 = -4
-6x³-4x²-8 +x³-x²-9x+4 = -5x³ -5x² -9x - 4
Answer:
We know that the rectangular plate has measures of:
length = 7.6 ± 0.05 cm
width = 3.1 ± 0.05 cm
(the error is 0.05cm because we know that both measures are correct to one decimal place)
First, the upper bound of the length is equal to the measure of the length plus the error, this is:
L = 7.6 cm + 0.05 cm = 7.65 cm
The upper bound of the area is the area calculated when we use the upper bound of the length and the upper bound of the widht.
Remember that the area for a rectangle of length L and width W, is:
A = W*L
Then the upper bound of the area is:
A = (7.6cm + 0.05cm)*(3.1cm + 0.05cm) = 10.8 cm^2