Answer:
The maximum pressure is 612.2 Pa
Explanation:
The pressure of the ice (P1) = 624 Pa
The temperature of the ice = 273.16 K
The maximum temperature the specimen = - 5 oC
= -5 + 273 = 268K
The maximum Pressure the freeze drying can be will be (P2) = ?
Using Pressure law, which shows the relationship between pressure and temperature.
P1 / T1 = P2 / T2
P2 T1 = P1 T2
P2 = P1 T2 / T1
P2 = 624 × 268 / 273.16
P2 = 612.2 Pa
The maximum pressure at which drying can be carried out is 612.2 Pa
Check the attached document more explanation. jjjjggggg
The initial temperature of the copper piece if a 240.0 gram piece of copper is dropped into 400.0 grams of water at 24.0 °C is 345.5°C
<h3>How to calculate temperature?</h3>
The initial temperature of the copper metal can be calculated using the following formula on calorimetry:
Q = mc∆T
mc∆T (water) = - mc∆T (metal)
Where;
- m = mass
- c = specific heat capacity
- ∆T = change in temperature
According to this question, a 240.0 gram piece of copper is dropped into 400.0 grams of water at 24.0 °C. If the final temperature of water is 42.0 °C, the initial temperature of the copper is as follows:
400 × 4.18 × (42°C - 24°C) = 240 × 0.39 × (T - 24°C)
30,096 = 93.6T - 2246.4
93.6T = 32342.4
T = 345.5°C
Therefore, the initial temperature of the copper piece if a 240.0 gram piece of copper is dropped into 400.0 grams of water at 24.0 °C is 345.5°C.
Learn more about temperature at: brainly.com/question/15267055
I belive it is synaptic cleft
Yes, the law of thermodynamics, or Law of Conservation of Energy
Answer:
60 g/100 g water
Explanation:
Find 5 °C on the horizontal axis.
Draw a line vertically from that point until you reach the solubility curve for CaCl₂.
Then draw a horizontal line from there to the vertical axis.
The solubility of CaCl₂ is 60 g/100 g water.