when multiplying two binomials together we use the F.O.I.L. method:
First
Outer
Inner
Last
(7-3i)(2-i)
First: 7 * 2 ..... Outter: 7 * -i .... Inner: -3i * 2 ...... Last: -3i * -i
First: 14 ...... Outter= -7i ..... Inner: -6i .... Last: 3i^2
putting this together we get 14-7i-6i+2i^2
We combine like terms and end up with 2i^2-13i+14
The student added 9 1/2 instead of adding -9 1/2
Answer:
All real numbers are solutions
Step-by-step explanation:
Let's solve your equation step-by-step
3(x+2)=5x+1−2x+5
Step 1: Simplify both sides of the equation
3(x+2)=5x+1−2x+5
(3)(x)+(3)(2)=5x+1+−2x+5(Distribute)
3x+6=5x+1+−2x+5
3x+6=(5x+−2x)+(1+5)(Combine Like Terms)
3x+6=3x+6
3x+6=3x+6
Step 2: Subtract 3x from both sides
3x+6−3x=3x+6−3x
6=6
Step 3: Subtract 6 from both sides
6−6=6−6
0=0
6a. 1 - 2sin(x)² - 2cos(x)² = 1 - 2(sin(x)² +cos(x)²) = 1 - 2·1 = -1
6c. tan(x) + sin(x)/cos(x) = tan(x) + tan(x) = 2tan(x)
6e. 3sin(x) + tan(x)cos(x) = 3sin(x) + (sin(x)/cos(x))cos(x) = 3sin(x) +sin(x) = 4sin(x)
6g. 1 - cos(x)²tan(x)² = 1 - cos(x)²·(sin(x)²)/cos(x)²) = 1 -sin(x)² = cos(x)²