Answer:
Step-by-step explanation:
Given
--- Initial scale factor
--- Missing from the question
Solving (a): The new scale factor.
Convert the initial blueprint to actual measurement using the initial scale factor, we have:
![Length = 12 * 2ft = 24ft](https://tex.z-dn.net/?f=Length%20%3D%2012%20%2A%202ft%20%3D%2024ft)
![Width = 8 * 2ft = 16ft](https://tex.z-dn.net/?f=Width%20%3D%208%20%2A%202ft%20%3D%2016ft)
From the question, we understand the new scale factor represents the width as 8in.
The scale factor (k2) is then calculated as:
![k_2 = \frac{Scale\ length}{Actual\ length}](https://tex.z-dn.net/?f=k_2%20%3D%20%5Cfrac%7BScale%5C%20length%7D%7BActual%5C%20length%7D)
![k_2 = \frac{8in}{24ft}](https://tex.z-dn.net/?f=k_2%20%3D%20%5Cfrac%7B8in%7D%7B24ft%7D)
Simplify
![k_2 = \frac{1in}{3ft}](https://tex.z-dn.net/?f=k_2%20%3D%20%5Cfrac%7B1in%7D%7B3ft%7D)
Represent as fraction
![k_2 = 1in:3ft](https://tex.z-dn.net/?f=k_2%20%3D%201in%3A3ft)
The above is the new scale factor
Solving (b): The new width
Using the scale factor above we have:
![k_2 = \frac{Scale\ width}{Actual\ width}](https://tex.z-dn.net/?f=k_2%20%3D%20%5Cfrac%7BScale%5C%20width%7D%7BActual%5C%20width%7D)
![\frac{1in}{3ft} = \frac{Scale\ width}{16ft}](https://tex.z-dn.net/?f=%5Cfrac%7B1in%7D%7B3ft%7D%20%3D%20%5Cfrac%7BScale%5C%20width%7D%7B16ft%7D)
The 16 is gotten from:
![Width = 8 * 2ft = 16ft](https://tex.z-dn.net/?f=Width%20%3D%208%20%2A%202ft%20%3D%2016ft)
So, we have:
![Scale\ width = 16ft * \frac{1in}{3ft}](https://tex.z-dn.net/?f=Scale%5C%20width%20%3D%2016ft%20%2A%20%5Cfrac%7B1in%7D%7B3ft%7D)
![Scale\ width = 16 * \frac{1in}{3}](https://tex.z-dn.net/?f=Scale%5C%20width%20%3D%2016%20%2A%20%5Cfrac%7B1in%7D%7B3%7D)
![Scale\ width =\frac{16\ in}{3}](https://tex.z-dn.net/?f=Scale%5C%20width%20%3D%5Cfrac%7B16%5C%20in%7D%7B3%7D)
<em>Hence, the scale width of the blueprint is: 16/3 inches</em>