Answer: 27/36
Step-by-step explanation: It says there are 36 bikes (18 pairs), meaning that there are 2 bikes per pair because 18 multiplied by 2 is 36.
1 pair (2 bikes) are yellow.
3 pairs (6 bikes) are red.
For purple, add yellow and red together: 2 + 6 = 8. Subtract the total number of bikes from this: 36 - 8 = 28 purple bikes.
If you take out 1 purple bike, this leaves you with 27. The probability of choosing a purple bike out of the total (36), is 27/36.
Please let me know if this is correct or wrong.
First, lets create a equation for our situation. Let

be the months. We know four our problem that <span>Eliza started her savings account with $100, and each month she deposits $25 into her account. We can use that information to create a model as follows:
</span>

<span>
We want to find the average value of that function </span>from the 2nd month to the 10th month, so its average value in the interval [2,10]. Remember that the formula for finding the average of a function over an interval is:

. So lets replace the values in our formula to find the average of our function:
![\frac{25(10)+100-[25(2)+100]}{10-2}](https://tex.z-dn.net/?f=%20%5Cfrac%7B25%2810%29%2B100-%5B25%282%29%2B100%5D%7D%7B10-2%7D%20)



We can conclude that <span>the average rate of change in Eliza's account from the 2nd month to the 10th month is $25.</span>
Answer:
There are (63) combinations. The notation means "six choose three". Out of six items (flavors) choose three.
(nk)=n!k!(n−k)!.
(63)=6!3!3!.
Think of it this way. There are 6 ways to choose a flavor. Once you choose, there are 5 ways to choose the next. After that, there are 4 flavors left. which is 6!/3!=6⋅5⋅4⋅3⋅2⋅13⋅2⋅1=6⋅5⋅4=120.
But, you could have chosen {chocolate,vanilla,strawberry} and you get the same combination as {vanilla, strawberry, chocolate} so we have to divide by 3!=3⋅2⋅1=6 to account for the order of choosing.
So the number of combinations of flavors is (63)=1206=20.
<h3>Mark me a brainlist</h3>
Answer:
1/12
Step-by-step explanation:
3/36 can easily be simplified into 1/12 you're welcome :)