Answer:- C. H
Explanations:- Reduction is gain of electron. In other words we could say that decrease in oxidation number is reduction.
As per the rules, oxidation number of hydrogen in its compounds is +1(except metal hydrides) and the oxidation number of oxygen in its compounds is -2.
The oxidation number in elemental form is zero.
In
, the oxidation number of H is +1 and oxidation number of O is -2. Oxidation number of Cl in
is -1. On product side, the oxidation number of hydrogen in
is zero and in
the oxidation number of H is +1 and that of O is -2. Oxidation number of Cl in
is 0.
From above data, Oxidation number of O is -2 on both sides so it is not reduced.
Oxidation number of Cl is changing from -1 to 0 which is oxidation.
Oxidation number of H is changing from +1 to 0 which is reduction.
So, the right choice is C.H
Explanation:
1. photosynthesis
2. Nucleus. The nucleus is the largest and most significant living organelle of the cell. ... Hence it is called brain or control centre of the cell.
3.Cytoplasm
Cells require a thick jelly-like substance that holds organelles in place inside the cell. This substance is known. Cytoplasm. Turgor pressure can help plants move.
4.Chloroplasts absorbing solar energy for cellular activities.
5.cell membrane
6.a.cell wall
b.chloroplast
c.large vacuole
6.2 grams of CO2 = 1.408786739226764 moles
Answer: Mass of
required to form 930 kg of iron is 1328 kg
Explanation:
To calculate the number of moles, we use the equation:
.....(1)
For iron:
Given mass of iron = 930 kg = 930000 g (1kg=1000g)
Molar mass of iron = 56 g/mol
Putting values in equation 1, we get:

The chemical equation for the production of iron follows:

By Stoichiometry of the reaction:
2 moles of iron are produced by = 1 mole of 
So, 16607 moles of iron will be produced by =
of 
Now, calculating the mass of
from equation 1, we get:
Mass of
= 
Thus mass of
required to form 930 kg of iron is 1328 kg