Answer:
4.7485 g
Explanation:
4.50 x 10^22 Cu atoms * (1 mol Cu / 6.022 x 10^23 Cu atoms) * 63.546 g Cu/(mol Cu) = 4.7485 g
In every mole of Cu, there are 6.022 x 10^23 atoms (Avogadro's number). The molecular weight of copper is 63.546 g/mol.
Mole ratio:
<span> MgCl</span>₂<span> + 2 KOH = Mg(OH)</span>₂<span> + 2 KCl
</span>
1 mole MgCl₂ -------------- 1 mole Mg(OH)₂
Answer B
hope this helps!
It can form dipole-dipole interactions but that’s all
Answer:
The coefficient in a balanced chemical equation indicates the mole ratio of both reactants and products.
Explanation:
For example lets consider the reation between Hydrogen and Oxygen to form water:
2H2 + O2 ----------------------- 2H2O
In this reaction, the coefficients of the balanced reaction can be transformed to Mole ratio according to Avogadro's Law which states that at standard temperature and pressure, equal volume of gases contain the same number of moles.
So the mole ratio for the above equation is the ratio of the coefficient:
2moles : 1 mole : 2 moles
Answer:
has boiling point of 238 K
Explanation:
Boiling point depends on different intermolecular force such as molecular wight, dipole-dipole attraction force, hydrogen bonding, ionic attraction force.
Homonuclear diatomic molecules are covalent non-polar molecules and thereby free from dipole-dipole attraction force, hydrogen bonding and ionic interaction forces.
Hence, boiling point of homonuclear diatomic molecules depends solely on molecular weight.
We know, higher the molecular weight of a molecule, higher will be its boiling point. This phenomenon can be realized in terms of increasing london dispersion force with increase in molecular weight.
Decreasing order of molecular weight of halogen molecules :
>
>
>
So, decresing order of boiling point of halogen molecules:
>
>
>
Hence
has boiling point of 238 K