I’m pretty sure the correct answer is D.
Answer :
is the oxidizing agent and Fe is the reducing agent.
Explanation :
Reducing agent : It is defined as the agent which helps the other substance to reduce and itself gets oxidized. Thus, it will undergo oxidation reaction.
Oxidizing agent : It is defined as the agent which helps the other substance to oxidize and itself gets reduced. Thus, it will undergo reduction reaction.
The balanced redox reaction is :

The half oxidation-reduction reactions are:
Oxidation reaction : 
Reduction reaction : 
In order to balance the electrons, we multiply the oxidation reaction by 4 and reduction reaction by 3 then added both equation, we get the balanced redox reaction.
Oxidation reaction : 
Reduction reaction : 

In this reaction,
is the reducing agent that loses an electron to another chemical species in a redox chemical reaction and itself gets oxidized and
is the oxidizing agent that gain an electron to another chemical species in a redox chemical reaction and itself gets reduced.
Thus,
is the oxidizing agent and Fe is the reducing agent.
Answer:
A) CH3CH2CH2CH2CH2CH2OH
Explanation:
For this question, we have the following answer options:
A) CH3CH2CH2CH2CH2CH2OH
B) (CH3CH2)2CH(OH)CH2CH3
C) (CH3CH2)2CHOHCH3
D) (CH3CH2)3COH
E) (CH3CH2)2C(CH3)OH
We have to remember the<u> reaction mechanism</u> of the substitution reaction with
. <em>The idea is to generate a better leaving group in order to add a "Br" atom.</em>
The
attacks the "OH" generation new a bond to P (O-P bonds are very strong), due to this new bond we will have a better leaving group that can remove the oxygen an allow the attack of the Br atom to generating a new C-Br bond. This is made by an <u>Sn2 reaction</u>. Therefore we will have a faster reaction with <u>primary substrates</u>. In this case, the only primary substrate is molecule A. So, <em>"CH3CH2CH2CH2CH2CH2OH"</em> will react faster.
See figure 1
I hope it helps!