Answer:
Here we have the domain:
D = 0 < x < 1
And we want to find the range in that domain for:
1) y = f(x) = x
First, if the function is only increasing in the domain (like in this case) the minimum value in the range will match with the minimum in the domain (and the same for the maximums)
f(0) = 0 is the minimum in the range.
f(1) = 1 is the maximum in the range.
The range is:
0 < y < 1.
2) y = f(x) = 1/x.
In this case the function is strictly decreasing in the domain, then the minimum in the domain coincides with the maximum in the range, and the maximum in the domain coincides with the minimum in the range.
f(0) = 1/0 ---> ∞
f(1) = 1/1
Then the range is:
1 < x.
Notice that we do not have an upper bound.
3) y = f(x) = x^2
This function is strictly increasing, then:
f(0) = 0^2 = 0
f(1) = 1^2 = 1
the range is:
0 < y < 1
4) y = f(x) = x^3
This function is strictly increasing in the interval, then:
f(0) = 0^3 = 0
f(1) = 1^3 = 1
the range is:
0 < y < 1.
5) y = f(x) = √x
This function is well defined in the positive reals, and is strictly increasing in our domain, then:
f(0) = √0 = 0
f(1) = √1 =1
The range is:
0 < y < 1
Answer:
8m.
Step-by-step explanation:
an = 2 an-1 means that each term in the sequence( except the first) is obtained by multiplying the last term by 2, so the first 4 terms are m, 2m, 4m, 8m.
Answer:
c
Step-by-step explanation:

A) Perimeter I’m 90% sure
I say that becuase if she is lining the OUTER EDGE of her driveway then she would need to know the outside og her driveway which would be perimeter.
135 because if you divide 90 by 2 you get 45 then add 45 and 90 and you get 135