1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dezoksy [38]
3 years ago
14

Which of the following is a vector quantity?Group of answer choices volume none of the above mass area

Physics
1 answer:
KengaRu [80]3 years ago
7 0

Answer:

Area is a vector quantity.

Explanation:

A vector quantity has both magnitudes as well as direction. On the other hand a scalar quantity has only magnitude.

Out of given options,

Volume and mass is a scalar quantity because they don't have directions. While area can be taken as a vector quantity. The direction of area vector of a surface is along perpendicular to the surface.

Hence, the correct option is (d).

You might be interested in
Which experiment best shows water’s ability to act as a solvent? raise the temperature of water and record its boiling point. fr
IrinaVladis [17]
The vanishing of an ionic solid (like table salt) would be an example of acting like a solvent
8 0
3 years ago
Read 2 more answers
Peg P is driven by the forked link OA along the path described by r = eu, where r is in meters. When u = p4 rad, the link has an
8_murik_8 [283]

Answer:

The transverse component of acceleration is 26.32 m/s^2 where as radial the component of acceleration is 8.77 m/s^2

Explanation:

As per the given data

u=π/4 rad

ω=u'=2 rad/s

α=u''=4 rad/s

r=e^u

So the transverse component of acceleration are given as

a_{\theta}=(ru''+2r'u')\\

Here

r=e^u\\r=e^{\pi/4}\\r=2.1932 m

r'=e^u.u'\\r'=2.1932 \times 2\\r'=4.3864 m

So

a_{\theta}=(ru''+2r'u')\\a_{\theta}=(2.1932\times 4+2\times 4.3864 \times 2)\\a_{\theta}=26.32 m/s\\

The transverse component of acceleration is 26.32 m/s^2

The radial component is given as

a_r=r''-r\theta'^2

Here

r''=e^u.u'^2+e^u u''\\r''=2.1932 \times (2)^2+2.1932\times 4\\r''=17.5456 m

So

a_r=r''-ru'^2\\a_r=17.5456-2.1932\times (2)^2\\a_r=8.7728 m/s^2

The radial component of acceleration is 8.77 m/s^2

6 0
4 years ago
I need help, ASAP i’m failing and i have no clue what’s going on in my AP physics class at all.
garri49 [273]
What’s the question or problem ?
6 0
3 years ago
Constant Acceleration Kinematics: Car A is traveling at 22.0 m/s and car B at 29.0 m/s. Car A is 300 m behind car B when the dri
Ainat [17]

Answer:

The taken is  t_A  = 19.0 \ s

Explanation:

Frm the question we are told that

  The speed of car A is  v_A  =  22 \ m/s

   The speed of car B is  v_B  = 29.0 \ m/s

     The distance of car B  from A is  d = 300 \ m

     The acceleration of car A is  a_A  = 2.40 \ m/s^2

For A to overtake B

    The distance traveled by car B  =  The distance traveled by car A - 300m

Now the this distance traveled by car B before it is overtaken by A is  

          d = v_B * t_A

Where t_B is the time taken by car B

Now this can also be represented as using equation of motion as

      d = v_A t_A  + \frac{1}{2}a_A t_A^2 - 300

Now substituting values

       d = 22t_A  + \frac{1}{2} (2.40)^2 t_A^2 - 300

Equating the both d

       v_B * t_A = 22t_A  + \frac{1}{2} (2.40)^2 t_A^2 - 300

substituting values

   29 * t_A = 22t_A  + \frac{1}{2} (2.40)^2 t_A^2 - 300

   7 t_A = \frac{1}{2} (2.40)^2 t_A^2 - 300

  7 t_A =1.2 t_A^2 - 300

   1.2 t_A^2 - 7 t_A - 300  = 0

Solving this using quadratic formula we have that

     t_A  = 19.0 \ s

7 0
3 years ago
The y-position of a damped oscillator as a function of time is shown in the figure.
NISA [10]

(1) The period of the oscillator is 1 second.

(2) The damping coefficient is 0.93.

<h3>What is period of oscillation?</h3>

The period of oscillation is the time taken to make one complete cycle.

From the graph, the time taken to make one complete oscillation is 1 second.

<h3>Damping coefficient</h3>

equation of the wave is given as;

y(t) = Ae^(-btx) cos(ωt)

<h3>at time, t = 0, y = 3.5</h3>

3.5 = Ae^(-0) cos(0)

3.5 = A x 1

A = 3.5 cm

<h3>at time, t = 1 cm, y = - 3cm</h3>

-3 = 3.5e^(-bx) cos(ω)

-3/3.5 = e^(-bx) cos(ω)

-0.857 = e^(-bx) cos(ω)

-0.857 / cos(ω) =  e^(-bx)

ln[-0.857 / cos(ω)] = -bx  

ln[-0.857 / cos(ω)] / b = - x  ---- (1)

<h3>at time, t = 2 cm, y = - 2cm</h3>

-2 = 3.5e^(-2bx) cos(2ω)

-0.57 = e^(-2bx) cos(2ω)

ln[-0.57 / cos(2ω)] = -2bx  

ln[-0.57 / cos(2ω)] /2b = - x  ------(2)

solve (1) and (2)

ln[-0.57 / cos(2ω)]/2b = ln[-0.857 / cos(ω)] /b

-0.57 / cos(ω) = 2(-0.857 / cos(ω))

2(-0.857/cosω) = -0.57/cos2ω

-(2 x 0.857) / (-0.57) = cosω/cos 2ω

3 = cosω/cos 2ω

3(cos 2ω) =  cosω

3(2cos²ω - 1) = cos ω

6cos²ω - 6 = cosω

6cos²ω  - cosω - 6 = 0

let cosω  = y

6y² - y - 6 = 0

solve the quadratic equation;

y = 1.1 or -0.92

cosω = -0.92

ω  = arc cos(-0.92)

ω  = 2.74 rad/s

From equation (1)

ln[-0.857 / cos(ω)] / x = -b  ---- (1)

let x = 1

ln(-0.857/cos(2.74) = -b

-0.93 = -b

b = 0.93

Thus, the damping coefficient is 0.93.

Learn more about damping coefficient here: brainly.com/question/14058210

#SPJ1

4 0
2 years ago
Other questions:
  • At what location does gravity play a role in moving tectonic plates
    7·2 answers
  • A 5 cm object is 6 cm from a convex lens, which has a focal length of 7 cm. What is the distance of the image from the lens
    13·1 answer
  • Answer question number 78
    10·1 answer
  • Diego rivera's mural for the lobby of the rca building was destroyed because
    5·1 answer
  • Ohms law in symbols is
    9·1 answer
  • What would the weight of an astronaut be on Saturn if his mass is 68 kg and acceleration of gravity on Saturn is 10.44 m/s2? Ple
    14·1 answer
  • The radiation per unit area from the Sun reaching the earth is 1400 W/m2 , approximately the amount of radiative power per unit
    6·1 answer
  • Which of the following provides the best analogy for an electron in an atomic orbital?
    15·2 answers
  • I'm Always in front of you. but you never see me. what am i?​
    6·1 answer
  • When you squeeze one end of an inflated balloon, the other end bulges out.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!