River sources tend to be at the top of mountains or areas of high elevation. This means that rivers impact the entire terrain from mountains to seas and oceans.
I hope this Helps!
Answer: The metal that has a greater reactivity is more easily oxidized.
Explanation:
Oxidation is when the elements lose electrons and increase their oxidation state.
The metals tend to react by losing electrons and form the corresponding cation.
For expample, sodium (an alkalyne metal) loses one elecron and form the cation Na¹⁺ , then this cation combine with an anion and form compounds like NaCl, NaOH. The same do the other alkalyne metals.
Magnesium (an alkalyne earth metal) loses two electrons and form the cation Mg²⁺, then it combines with some anions to form compounds, like MgSO₄, Mg(OH)₂.
So, the easier the metal gets oxidized the greater its reactivity.
Assuming ammonia is the product of this reaction:
N2+3H2--->2NH3
2 mole N2 * (3 mol H2)/(1 mol N2)= 6 mol H2
You would need 6 mol of hydrogen gas to completely react with 2 mol of nitrogen.
This is covalent network type of solid.
For example, silicon dioxide (SiO₂) is covalent network solid with covalent bonding.
Covalent network solid is a chemical compound (or element) in which the atoms are bonded by covalent bonds in a continuous network extending throughout the material.
Silicon(IV) oxide has continuous three-dimensional network of SiO₂ units and diamond has sp3 hybridization.
This solids do not have free electrons so they are good insulators.
They have strong covalent bonds, so they melt at extremely high temperature.
Other examples are quartz, diamond, and silicon carbide.
More about network solid: brainly.com/question/15548648
#SPJ4
Answer:
The nitrogens are both sp3 hybridized. Their bonds are formed by sp overlaps. The carbon and oxygen are sp2 hybridized. The double bond with oxygen is produced by a sp2 overlap to form the sigma component and a probital overlap to form the pi component. The bonds with hydrogen are formed by sp2 overlaps.
Explanation: