Answer:
x = 0, x = -4, and x = 6
Step-by-step explanation:
To find the zeros of this polynomial, we can begin by factoring out a common factor of each term. 'x' is a common factor. We can distribute this variable out, giving us:
f(x) = x(x²- 2x- 24)
Now, factor the polynomial inside of the parenthesis into its simplest form. Factors of -24 that add up to -2 are -4 and 6.
f(x) = x( x + 4) (x - 6)
From this, we can derive the zeros x = 0, x = -4 and x = 6.
Answer:
you need to give us a mathematical equation to answer that
Step-by-step explanation:
please add
JKL should be the right answer
56% of 75 = 42
80% of 60 = 48
The question asks for the difference, so there are 6 additional people who like salsa music
Answer:
- 1 = pentagon
- 2 = diamond
- 3 = square
- 5 = circle
- 6 = rectangle
- 7 = oval
- 8 = triangle
- 9 = hexagon
- 10 = trapezoid
Step-by-step explanation:
Each half of a hanger divides the total weight in half. The right-most vertical has a total weight of 80/16 = 5. It consists of a square and a diamond, and we know the square is 1 more than the diamond. That means 2 diamonds weigh 5 -1 = 4. A diamond weighs 2, and a square weighs 3. The other half of that balance is a circle, which weighs 5.
The total of a square and oval is 10, so the oval is 10 -3 = 7. The two trapezoids weigh 20, so each is 10.
The second vertical from the left is a circle and diamond which will weigh 5+2 = 7. That makes the sum of a pentagon and rectangle also be 7. The 7+7 = 14 below the square on the left branch makes the total of that branch be 14+3 = 17, which is also the sum of the triangle and hexagon.
The weight below the rectangle at top left is 17+17 = 34, and the weight of that entire branch is 40. Thus the rectangle is 40-34 = 6, which makes the pentagon 7-6 = 1.
We require the sum of the triangle and hexagon be 17, with the triangle being the smaller value, and both being 9 or less (the trapezoid is the only figure weighing more than 9). Hence the triangle is 8 and the hexagon is 9.
The weights are summarized in the answer section, above.