Answer:
The answer is already in the question. The coordinates of the entrance to the Mount Rushmore parking area are given by latitude 43.8753972 and longitude -103.4523083.
Step-by-step explanation:
I believe the person asking the question wants some other detail that s/he did not state explicitly.
Option C:
![$\frac{\sqrt[3]{100 x}}{5}=\sqrt[3]{\frac{4 x}{5}}](https://tex.z-dn.net/?f=%24%5Cfrac%7B%5Csqrt%5B3%5D%7B100%20x%7D%7D%7B5%7D%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B4%20x%7D%7B5%7D%7D)
Solution:
Given expression is
![$\sqrt[3]{\frac{4 x}{5}}](https://tex.z-dn.net/?f=%24%5Csqrt%5B3%5D%7B%5Cfrac%7B4%20x%7D%7B5%7D%7D)
Note: ![\sqrt[3]{125}=\sqrt[3]{{5^3}} = 5](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B125%7D%3D%5Csqrt%5B3%5D%7B%7B5%5E3%7D%7D%20%20%3D%205)
To find the correct expression for the above simplified expression.
Option A: ![\frac{\sqrt[3]{4 x}}{5}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B3%5D%7B4%20x%7D%7D%7B5%7D)
5 can be written as
.
![$\frac{\sqrt[3]{4 x}}{5}=\frac{\sqrt[3]{4 x}}{\sqrt[3]{125} }](https://tex.z-dn.net/?f=%24%5Cfrac%7B%5Csqrt%5B3%5D%7B4%20x%7D%7D%7B5%7D%3D%5Cfrac%7B%5Csqrt%5B3%5D%7B4%20x%7D%7D%7B%5Csqrt%5B3%5D%7B125%7D%20%7D)
![$=\sqrt[3]{\frac{4x}{125} }](https://tex.z-dn.net/?f=%24%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B4x%7D%7B125%7D%20%7D)
It is not the given simplified expression.
Option B: ![\frac{\sqrt[3]{20 x}}{5}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B3%5D%7B20%20x%7D%7D%7B5%7D)
![$\frac{\sqrt[3]{20 x}}{5}=\frac{\sqrt[3]{20 x}}{\sqrt[3]{125} }](https://tex.z-dn.net/?f=%24%5Cfrac%7B%5Csqrt%5B3%5D%7B20%20x%7D%7D%7B5%7D%3D%5Cfrac%7B%5Csqrt%5B3%5D%7B20%20x%7D%7D%7B%5Csqrt%5B3%5D%7B125%7D%20%7D)
![$=\sqrt[3]{\frac{20x}{125} }](https://tex.z-dn.net/?f=%24%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B20x%7D%7B125%7D%20%7D)
Cancel the common factor in both numerator and denominator.
![$=\sqrt[3]{\frac{4x}{25} }](https://tex.z-dn.net/?f=%24%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B4x%7D%7B25%7D%20%7D)
It is not the given simplified expression.
Option C: ![\frac{\sqrt[3]{100 x}}{5}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B3%5D%7B100%20x%7D%7D%7B5%7D)
![$\frac{\sqrt[3]{100 x}}{5}=\frac{\sqrt[3]{100 x}}{\sqrt[3]{125} }](https://tex.z-dn.net/?f=%24%5Cfrac%7B%5Csqrt%5B3%5D%7B100%20x%7D%7D%7B5%7D%3D%5Cfrac%7B%5Csqrt%5B3%5D%7B100%20x%7D%7D%7B%5Csqrt%5B3%5D%7B125%7D%20%7D)
![$=\sqrt[3]{\frac{100x}{125} }](https://tex.z-dn.net/?f=%24%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B100x%7D%7B125%7D%20%7D)
Cancel the common factor in both numerator and denominator.
![$=\sqrt[3]{\frac{4 x}{5}}](https://tex.z-dn.net/?f=%24%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B4%20x%7D%7B5%7D%7D)
It is the given simplified expression.
Option D: ![\frac{\sqrt[3]{100 x}}{125}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B3%5D%7B100%20x%7D%7D%7B125%7D)
![$\frac{\sqrt[3]{100 x}}{125}=\frac{\sqrt[3]{100 x}}{5^3}](https://tex.z-dn.net/?f=%24%5Cfrac%7B%5Csqrt%5B3%5D%7B100%20x%7D%7D%7B125%7D%3D%5Cfrac%7B%5Csqrt%5B3%5D%7B100%20x%7D%7D%7B5%5E3%7D)
It is not the given simplified expression.
Hence Option C is the correct answer.
![$\frac{\sqrt[3]{100 x}}{5}=\sqrt[3]{\frac{4 x}{5}}](https://tex.z-dn.net/?f=%24%5Cfrac%7B%5Csqrt%5B3%5D%7B100%20x%7D%7D%7B5%7D%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B4%20x%7D%7B5%7D%7D)
Answer:
10 ways
Step-by-step explanation:
The answer is letter c. x2-8x+24-[72/(x+3)]. If you do not know how to solve this using the long division method, you can always evaluate the options through the process of elimination first. Since the degree of the other factor is already 1 (x to the power of 1), you know that option d. is not the correct answer because you know that the other factor must be raised to the power of 2. That leaves us with a, b and c. Working backwards and multiplying the given factor (x+3) with the factor in b, gives us x3-5x2+72. So from there, you know that you have to eliminate 72, which can be removed when it is subtracted by itself. Letter c does just that. Try multiplying (x+3) and option c for yourself :).
If Bobby claims Peter started with 21 cards, then we'll work this into our equation.
21 - 3 (that he lost) = 18
18 / 2 (the half he gave) = 9
So this means that he did have 21 cards to begin with. Please reply to this with a list of the answers that can/could be checked!