Answer:
A) 0
Step-by-step explanation:
When x is divided by 11, we have a quotient of y and a remainder of 3
x/11 = y + 3
x = 11y + 3 ........(1)
When x is divided by 19, we have a remainder of 3 also
x/19 = p + 3 (p = quotient)
x = 19p + 3 ..........(2)
Equate (1) and (2)
x = 11y + 3 = 19p + 3
11y + 3 = 19p + 3
11y = 19p + 3 -3
11y = 19p
Divide both sides by 11
11y/11 = 19p/11
y = 19p/11
y and p are integers. 19 is a prime number. P/11 is also an integer
y = 19(integer)
This implies that y is a multiple of 19. When divided by 19, there is no remainder. The remainder is 0
Answer: (7.97)
Step-by-step explanation:
1 dozen = 5.98
.5 dozen = 2.99
5.98+2.99=8.79 8.79- the 1.00 is (7.97)
hope this helps!
Answer:
(5,354 + x)
or
536.4*x
Step-by-step explanation:
We know that x = 10.
Now we want to write an expression (in terms of x) for the number 5,364.
This could be really trivial, remember that x = 10.
Then: (x - 10) = 0
And if we add zero to a number, the result is the same number, then if we add this to 5,364 the number does not change.
5,364 = 5,364 + (x - 10) = 5,364 + x - 10
5,364 = 5,354 + x
So (5,354 + x) is a expression for the number 5,364 in terms of x.
Of course, this is a really simple example, we could do a more complex case if we know that:
x/10 = 1
And the product between any real number and 1 is the same number.
Then:
(5,364)*(x/10) = 5,364
(5,364/10)*x = 5,364
536.4*x = 5,364
So we just found another expression for the number 5,364 in terms of x.