Answer:
Explanation:
Using the formula for calculating range expressed as;
R = U√2H/g
U is the speed = 300m/s
H is the maximum height = 78.4m
g is the acceleration due to gravity = 9.8m/s²
Substitute into the fromula;
R = 300√2(78.4)/9.8
R = 300 √(16)
R = 300*4
R = 1200m
Hence the projectile travelled 1200m before hitting the ground
Answer:
The speed of the sled is 3.56 m/s
Explanation:
Given that,
Mass = 2.12 kg
Initial speed = 5.49 m/s
Coefficient of kinetic friction = 0.229
Distance = 3.89 m
We need to calculate the acceleration of sled
Using formula of acceleration

Where, F = frictional force
m = mass
Put the value into the formula




We need to calculate the speed of the sled
Using equation of motion

Where, v = final velocity
u = initial velocity
a = acceleration
s = distance
Put the value in the equation



Hence, The speed of the sled is 3.56 m/s.
<u>Given </u><u>:</u><u>-</u>
- An elevator is moving vertically up with an acceleration a.
<u>To </u><u>Find</u><u> </u><u>:</u><u>-</u>
- The force exerted on the floor by a passenger of mass m .
<u>Solution</u><u> </u><u>:</u><u>-</u>
As the man is in a accelerated frame that is <u>non </u><u>inertial</u><u> frame</u><u> </u>, we would have to think of a pseudo force .
- The direction of this force is opposite to the direction of acceleration the frame and its magnitude is equal to the product of mass of the concerned body with the acceleration of the frame .
For the FBD refer to the attachment . From that ,
<u>Hence</u><u> </u><u>option</u><u> </u><u>d </u><u>is </u><u>correct</u><u> </u><u>choice </u><u>.</u>
<em>I </em><em>hope</em><em> this</em><em> helps</em><em> </em><em>.</em>