The temperature rises until the water reaches the next change of state — boiling. As the particles move faster and faster, they begin to break the attractive forces between each otherand move freely as steam — a gas. The process by which a substance moves from the liquid state to the gaseousstate is called boiling.
<u>The question doesn't have any particular requirement, but we'll compute the displacement of the plane from its initial and final landing point in the pasture
</u>
Answer:


Explanation:
<u>Displacement
</u>
The vector displacement
is a measure of the change of position of a moving object. The displacement doesn't depend on the path followed, only on the final and initial positions. Its scalar counterpart, the distance, does measure the total space traveled and considers all the changes in the direction taken by the object. To find the displacement, we must add all the particular displacements by using vectors.
The plane first flies 160 km at 66° east of north. To find the vector expression of this displacement, we must know the angle with respect to the East direction or North of East. Knowing the angle East of North is 66°, the required angle is 90°-66°=34°
The first vector is expressed as


The second displacement is 260 km at 49° South of East. This angle is below the horizontal respect to the reference, thus we use -49°.
The second vector is expressed as:


The total displacement is computed as the vectorial sum of both vectors


The magnitude of the total displacement is


And the direction is

Answer:
1)limited system of government
2)representative system of government
3)individual rights system of government
Explanation:
the 3 basic concepts of government that the English brought with them to North America are listed in the answer
Explanation:
It is given that,
The velocity of a particle is given by :

Where
v is in m/s and t is in seconds
Let a is the acceleration of the object at time t. So,



When a = 0

t = 2.5 s
a is zero at t = 2.5 s. Velocity, 
v = -75 m/s
Since,
, s is the distance travelled



At t = 2.5 s, 
s = −83.34 m
Hence, this is the required solution.
Answer:
time period is increased so the clock will become SLOW
Explanation:
As we know that the time period of the simple pendulum is given by the formula

here we know that
L = distance of the pendulum bob from the hinge
g = acceleration due to gravity
now here the bob slide down so that the length of the pendulum is being increased
so time period T of the pendulum is also increased
so here the pendulum will take more time to oscillate or to complete one oscillation
so clock will become SLOW