To solve the problem it is necessary to apply the concepts related to heat flow,
The heat flux can be defined as

Where,
k = Thermal conductivity
A = Area of cross-sectional area
d = Length of the rod
Temperature difference between the ends of the rod
Thermal conductivity of copper rod
Area of cross section of rod
Temperature difference
length of rod
Replacing then,



From the definition of heat flow we know that this is also equivalent

Where,
Mass per second
Latent heat of fusion of ice
Re-arrange to find 





Therefore the mass of ice per second that melts is 0.032g
Answer:
. A chemical reaction is the rearranging of atoms to form new substances. E=mc^ aleph
True
The more the number of shells will let go of their outer electrons more easily because the effective nuclear charge on the outer (valence) electrons will be lower. This is called 'shielding', the outer electrons will be shielded from the nucleus by the inner electrons.
Hope this Helps
Answer:
Explanation:
Since energy is conserved:
2
mu
2
=
2
mv
2
+mgh
⇒u
2
=v
2
+2gh
⇒(3)
2
=v
2
+2(9.8)(0.5−0.5cos60)
⇒v=2m/s
r₁ = distance of point A from charge q₁ = 0.13 m
r₂ = distance of point A from charge q₂ = 0.24 m
r₃ = distance of point A from charge q₃ = 0.13 m
Electric field by charge q₁ at A is given as
E₁ = k q₁ /r₁² = (9 x 10⁹) (2.30 x 10⁻¹²)/(0.13)² = 1.225 N/C towards right
Electric field by charge q₂ at A is given as
E₂ = k q₂ /r₂² = (9 x 10⁹) (4.50 x 10⁻¹²)/(0.24)² = 0.703 N/C towards left
Since the electric field in left direction is smaller, hence the electric field by the third charge must be in left direction
Electric field at A will be zero when
E₁ = E₂ + E₃
1.225 = 0.703 + E₃
E₃ = 0.522 N/C
Electric field by charge "q₃" is given as
E₃ = k q₃ /r₃²
0.522 = (9 x 10⁹) q₃/(0.13)²
q₃ = 0.980 x 10⁻¹² C = 0.980 pC