1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Leona [35]
3 years ago
8

An observer on Earth sees rocket 1 leave Earth and travel toward Planet X at 0.3c. The observer on Earth also sees that Planet X

is stationary. An observer on Planet X sees rocket 2 travel toward Earth at 0.4c. What is the speed of rocket 1 according to an observer on rocket 2?
Physics
1 answer:
Verizon [17]3 years ago
5 0

Answer:

0.625 c

Explanation:

Relative speed of a body may be defined as the speed of one body with respect to some other or the speed of one body in comparison to the speed of second body.

In the context,

The relative speed of body 2 with respect to body 1 can be expressed as :

$u'=\frac{u-v}{1-\frac{uv}{c^2}}$

Speed of rocket 1 with respect to rocket 2 :

$u' = \frac{0.4 c- (-0.3 c)}{1-\frac{(0.4 c)(-0.3 c)}{c^2}}$

$u' = \frac{0.7 c}{1.12}$

u'=0.625 c

Therefore, the speed of rocket 1 according to an observer on rocket 2 is 0.625 c

You might be interested in
If wavelength and speed of a wave are 4 m and 332 m/s respectively, calculate its frequency<br>​
Furkat [3]

Explanation:

<em>Given </em>

<em>wavelength </em><em>=</em><em> </em><em>4</em><em> </em><em>m</em>

<em>speed </em><em> </em><em>=</em><em> </em><em>3</em><em>3</em><em>2</em><em> </em><em>m/</em><em>s</em>

<em>frequency </em><em>=</em><em> </em><em>?</em>

<em>We </em><em>know </em><em>we </em><em>have </em><em>the </em><em>formula </em>

<em>wavelength</em><em> </em><em>=</em><em> </em><em>speed </em><em>/</em><em> </em><em>frequency </em>

<em>4</em><em> </em><em>=</em><em> </em><em>3</em><em>3</em><em>2</em><em> </em><em>/</em><em> </em><em>frequency </em>

<em>frequency </em><em>=</em><em> </em><em>3</em><em>3</em><em>2</em><em>/</em><em>4</em>

<em>Therefore </em><em> </em><em>frequency </em><em>is </em><em>8</em><em>3</em><em> </em><em>Hertz </em><em>.</em>

4 0
2 years ago
How do you change the currents in a circuit
mel-nik [20]
-
Eddy Current Testing

Introduction
Basic Principles
History of ET
Present State of ET

The Physics
Properties of Electricity
Current Flow & Ohm's Law
Induction & Inductance
Self Inductance
Mutual Inductance
Circuits & Phase
Impedance
Depth & Current Density
Phase Lag

Instrumentation
Eddy Current Instruments
Resonant Circuits
Bridges
Impedance Plane
Display - Analog Meter

Probes (Coils)
Probes - Mode of Operation
Probes - Configuration
Probes - Shielding
Coil Design
Impedance Matching

Procedures Issues 
Reference Standards
Signal Filtering

Applications
Surface Breaking Cracks
SBC using Sliding Probes
Tube Inspection 
Conductivity 
Heat Treat Verification
Thickness of Thin Mat'ls
Thickness of Coatings

Advanced Techniques
Scanning
Multi-Frequency Tech.
Swept Frequency Tech.
Pulsed ET Tech.
Background Pulsed ET
Remote Field Tech.

Quizzes

Formulae& Tables
EC Standards & Methods
EC Material Properties
-






Current Flow and Ohm's Law

Ohm's law is the most important, basic law of electricity. It defines the relationship between the three fundamental electrical quantities: current, voltage, and resistance. When a voltage is applied to a circuit containing only resistive elements (i.e. no coils), current flows according to Ohm's Law, which is shown below.

I = V / R 

Where: 

I =

Electrical Current (Amperes)

V =

Voltage (Voltage)

R =

Resistance (Ohms)

    

Ohm's law states that the electrical current (I) flowing in an circuit is proportional to the voltage (V) and inversely proportional to the resistance (R). Therefore, if the voltage is increased, the current will increase provided the resistance of the circuit does not change. Similarly, increasing the resistance of the circuit will lower the current flow if the voltage is not changed. The formula can be reorganized so that the relationship can easily be seen for all of the three variables.

The Java applet below allows the user to vary each of these three parameters in Ohm's Law and see the effect on the other two parameters. Values may be input into the dialog boxes, or the resistance and voltage may also be varied by moving the arrows in the applet. Current and voltage are shown as they would be displayed on an oscilloscope with the X-axis being time and the Y-axis being the amplitude of the current or voltage. Ohm's Law is valid for both direct current (DC) and alternating current (AC). Note that in AC circuits consisting of purely resistive elements, the current and voltage are always in phase with each other.

Exercise: Use the interactive applet below to investigate the relationship of the variables in Ohm's law. Vary the voltage in the circuit by clicking and dragging the head of the arrow, which is marked with the V. The resistance in the circuit can be increased by dragging the arrow head under the variable resister, which is marked R. Please note that the vertical scale of the oscilloscope screen automatically adjusts to reflect the value of the current.

See what happens to the voltage and current as the resistance in the circuit is increased. What happens if there is not enough resistance in a circuit? If the resistance is increased, what must happen in order to maintain the same level of current flow?


4 0
3 years ago
In handball, who is the only player allowed in the goalie area?
lidiya [134]

Answer:

Only the goalie is allowed inside the goal crease. The only exception when another player is allowed in the goal area is when they take off from outside the goal area, and shoots or passes the ball before landing. To avoid interference with other players, the player must then exit the goal area as soon as possible.

Explanation:

4 0
3 years ago
A spaceprobe has an 29.0 m length when measured at rest. What length
elixir [45]

Answer:

The observer sees the space-probe 9.055m long.

Explanation:

Let L_0 be the length of the space-probe when measured at rest, and L be its length as observed by an observer moving at velocity v, then

(1).\: \: L = L_0\sqrt{1-\dfrac{v^2}{c^2} }

Now, we know that L_0 = 29.0m and v = 0.95c, and putting these into (1) we get:

L = 29\sqrt{1-\dfrac{(0.95c)^2}{c^2} }

L = 29\sqrt{1-0.95^2 }

\boxed{L = 9.055m}

Thus, an observer moving at 0.95c observes the space-probe to be 9.055m long.

3 0
3 years ago
Where does the energy released in a nuclear decay reaction come from
erastovalidia [21]
The answer is electrons
8 0
2 years ago
Other questions:
  • When heating water on a stove, a full pan of water takes longer to reach the boiling point than a pan that is half full. why?
    5·1 answer
  • 1. Line segment AC touches the circle at a single point B. Line segment OB extends through the center of the circle.
    7·1 answer
  • Wind erosion can be reduced by _____.
    14·1 answer
  • Some one please help me!!!!!!!
    8·1 answer
  • Internal injuries can include which of the following? HELP ASAP (EDG ANATOMY 2020)
    14·1 answer
  • What is the free-fall acceleration on a planet where the period of a 1.07 m long pendulum is 2.02 s?
    15·1 answer
  • An outside force, Fo, brings two small metal spheres, A and B, at rest from a long distance away to a point where they are 1 met
    8·1 answer
  • Electric forces stay the same as distance changes electric field change true or false
    11·1 answer
  • Fill in the blanks to complete the sentence.
    6·2 answers
  • Of the following statement: Choose the Variable<br><br> X = 4 m
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!