Answer:

Explanation:
By Einstein's Equation of photoelectric effect we know that

here we know that
= energy of the photons incident on the metal
= minimum energy required to remove photons from metal
= kinetic energy of the electrons ejected out of the plate
now we know that it requires 351 nm wavelength of photons to just eject out the electrons
so we can say

here we know that

now we have

now by energy equation above when photon of 303 nm incident on the surface





Tom used more Force but over a shorter distance. Tom and Claudia both did the same amount of work.
Answer:
More extreme weather.
Explanation:
The Conveyor Belt of tides functions on a local and global level to spread out the cold and hot temperature differences on the planet. It is a delicate but important process that is easily disrupted, which causes it to slow down. And when it slows down, all those temperature differences will become more concentrated, causing colder places to be colder and hotter places to be hotter, ultimately leading to more extreme weather events as these cold and hot spots collide more violently than before.
Here's a picture I found on it:
Answer:
3 seconds
Explanation:
Since h(t) represents the height and t represents the time, we can set the equation equal to 150 to find t.
-16t^2+96t+6=150
Subtract 150 from both sides to set the equation equal to 0, to find the solutions.
-16t^2+96t-144=0
Factor out -16, because all of the terms are divisible by it.
-16(t^2+6t+9)=0
Now we can focus on the terms inside the parenthesis and factor it again.
t^2-6t+9=0
We need to find two value that can be multiplied to get 9 and added to get -6.
-3 and -3 works.
Thus, we get (x-3)(x-3).
Now solve for 0.
x-3=0
x=3
The object reaches its maximum height after 3 seconds.