If the net force on object A is 5 N and the net force on object B is 10 N, then object B will accelerate more quickly than object A provided the mass of both objects are same.
Answer: Option C
<u>Explanation:
</u>
According to Newton’s second law of motion, any external force applied on an object is directly proportional to the mass and acceleration of the object. In order to state this law in terms of acceleration, it is stated that acceleration exhibited by any object is directly proportional to the net force applied on the object and inversely proportional to the mass of the object as shown below:

So if two objects A and B are identical which means they have same mass, then the acceleration attained by the object will be directly proportionate to the net forces exerted on the objects only.
Thus if the force applied is more for one object, then the object will be exhibiting more acceleration compared to the other one. So as object B is experiencing a net force of 10 N which is greater than the net force experiences by object A, then the object B will be accelerating more quickly compared to the object A's acceleration.
Yes the Earth is bigger than the Moon.
The moon is one-quarter the size of Earth.
Let V = the volume of the balloon
Force of gravity = V * ?hot * g downward
Buoyant force = V * ?cool * g upward
Net upward force F = V * ?cool * g - V * ?hot * g
F = V g (?cool - ?hot)
Mass of the balloon m = V ?hot
a = F/m = V g (?cool - ?hot)/(V ?hot)
a = g(?cool/?hot - 1)
a = 9.8(1.29/0.93 - 1)
a = 3.79 m/s^2
<span>Answer is 3.79 m/s^2</span>
Answer:
El mango llega al suelo a una velocidad de 329.982 metros por segundo.
Explanation:
El mango experimenta un movimiento de caída libre, es decir, un movimiento uniformemente acelerado debido a la gravedad terrestre, despreciando los efectos de la viscosidad del aire y la rotación planetaria. Entonces, la velocidad final del mango, es decir, la velocidad con la que llega al suelo, se puede determinar mediante la siguiente fórmula cinemática:
(1)
Donde:
- Velocidad inicial, en metros por segundo.
- Velocidad final, en metros por segundo.
- Aceleración gravitacional, en metros por segundo al cuadrado.
- Tiempo, en segundos.
Si sabemos que
,
y
, entonces la velocidad final del mango es:



El mango llega al suelo a una velocidad de 329.982 metros por segundo.
A scientist would use a unit of length appropriate for the magnitude of what he or she is measuring. In this case, since rock is built up very slowly, they would probably use millimetres or centimetres. In some cases they may use meters.