The answer is option B "anaerobic." Weightlifting deals with stress to the muscles when lifting weights and due time the muscles will begin to adapt and get stronger. Other examples of anaerobic exercise are things like: weight training, sprinting, cycling, and jumping anything that has short exertion, and high-intensity movement is an anaerobic exercise.
Hope this helps!
Nonportrit
Answer:
Er = 108 [J]
Explanation:
To solve this problem we must understand that the total energy is 200 [J]. Of this energy 44 [J] are lost in sound and 48 [J] are lost in heat. In such a way that these energy values must be subtracted from the total of the kinetic energy.
200 - 44 - 48 = Er
Where:
Er = remaining energy [J]
Er = 108 [J]
<u>[Reflection]</u>
- This occurs when light bounces off a surface (reflection is when light bounces off of something, a medium, but doesn't go through.)
- Best with a smooth surface (it is easiest for light to bounce off when the surface is smooth)
- If not for this behavior, mirrors wouldn't work (mirrors use reflection, if they did not you would not be able to see your <em>reflection</em>)
<u>[Refraction]</u>
- Light moves from one medium to another (when light moves from one medium to another, it refracts)
- Lenses in your glasses to bend light waves (refraction is all about bending light waves, so this option falls under this category)
- Microscopes and telescopes take advantage of this behavior of light (again, refraction is bending light waves. When you bend a light wave, it can make it easier to see [larger, smaller, etc] so this option is refraction)
- Light wave changes speed (light does not change speed when being reflected because it is in the same medium and just bouncing, but it refraction is changes mediums so it will bend and change speed)
[Note]
- Some of these can be figured out by knowing the definitions. For example, refraction is defined as "change in direction ... of any wave as a result of its traveling at different speeds at different points along the wave front" (Oxf/ord Languages)
Have a nice day!
I hope this is what you are looking for, but if not - comment! I will edit and update my answer accordingly. (ノ^∇^)
- Heather
Answer:
Explanation:
Given
Airplane is flying with horizontally with a constant momentum during time interval 
Impulse is given by change in momentum, so there is no net impulse on the Plane because momentum is constant
(b) As there is no change in momentum therefore impulse of thrust and air drag is balanced i.e. both are equal in magnitude but act in opposite direction
Answer:
Electric field magnitude
E = K/qd
Where
K = kinetic energy of electron
d = electron distance
q = charge
Explanation:
Given the relationship between workdone and energy
Work-energy theorem:
Net workdone = Energy change
W = ∆E
In this case
W = ∆K.E
And,
∆K.E = K(final) - K(initial)
To stop the kinetic energy | K(final) = 0
K(initial) = K (given)
∆K.E = 0 - K = -K
Let the electric force on the electron has magnitude F.
And
W = -Fd = ∆K.E = -K
-Fd = -K
F = K/d .....1
The magnitude of the electric field E that can stop these electron in a distance d:
E = F/q ......2
Where q is the charge on electron.
substituting equation 1 to 2
E = (K/d)/q = K/qd
E = K/qd