1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Zinaida [17]
3 years ago
6

Can someone help me with this question please.

Mathematics
1 answer:
Nana76 [90]3 years ago
6 0

Answer:

it has decreased the most in-between day 11 and day 6 because the graph has a little bit of a steeper drop. So there is less snow those days.

Step-by-step explanation:

You might be interested in
What is 0.36 expressed as a fraction in simplest form
stiv31 [10]
We know that
0.36 is equal to------> 36/100----> divided by 4 both members----> 9/25

the answer is
9/25
7 0
3 years ago
How do you solve an equation in slope intercept form
kipiarov [429]

Identify the slope, m. This can be done by calculating the slope between two known points of the line using the slope formula.

Find the y-intercept. This can be done by substituting the slope and the coordinates of a point (x, y) on the line in the slope-intercept formula and then solve for b.

7 0
3 years ago
Suppose that a recent article stated that the mean time spent in jail by a first-time convicted burglar is 2.5 years. A study wa
Viefleur [7K]

Answer:

sigma should be used

Step-by-step explanation:

Given that The mean length of time in jail from the survey was four years with a standard deviation of 1.9 years.

The above given is for sample of 27 size.

For hypothesis test to compare mean of sample with population we can use either population std dev or sample std dev.

But once population std deviation is given, we use only that as that would be more reliable.

So here we can use population std deviation 1.4 only.

If population std deviation is used we can use normality and do Z test

4 0
3 years ago
Let production be given by P = bLαK1−α where b and α are positive and α < 1. If the cost of a unit of labor is m and the cost
Nana76 [90]

Answer:

The proof is completed below

Step-by-step explanation:

1) Definition of info given

We have the function that we want to maximize given by (1)

P(L,K)=bL^{\alpha}K^{1-\alpha}   (1)

And the constraint is given by mL+nK=p

2) Methodology to solve the problem

On this case in order to maximize the function on equation (1) we need to calculate the partial derivates respect to L and K, since we have two variables.

Then we can use the method of Lagrange multipliers and solve a system of equations. Since that is the appropiate method when we want to maximize a function with more than 1 variable.

The final step will be obtain the values K and L that maximizes the function

3) Calculate the partial derivates

Computing the derivates respect to L and K produce this:

\frac{dP}{dL}=b\alphaL^{\alpha-1}K^{1-\alpha}

\frac{dP}{dK}=b(1-\alpha)L^{\alpha}K^{-\alpha}

4) Apply the method of lagrange multipliers

Using this method we have this system of equations:

\frac{dP}{dL}=\lambda m

\frac{dP}{dK}=\lambda n

mL+nK=p

And replacing what we got for the partial derivates we got:

b\alphaL^{\alpha-1}K^{1-\alpha}=\lambda m   (2)

b(1-\alpha)L^{\alpha}K^{-\alpha}=\lambda n   (3)

mL+nK=p   (4)

Now we can cancel the Lagrange multiplier \lambda with equations (2) and (3), dividing these equations:

\frac{\lambda m}{\lambda n}=\frac{b\alphaL^{\alpha-1}K^{1-\alpha}}{b(1-\alpha)L^{\alpha}K^{-\alpha}}   (4)

And simplyfing equation (4) we got:

\frac{m}{n}=\frac{\alpha K}{(1-\alpha)L}   (5)

4) Solve for L and K

We can cross multiply equation (5) and we got

\alpha Kn=m(1-\alpha)L

And we can set up this last equation equal to 0

m(1-\alpha)L-\alpha Kn=0   (6)

Now we can set up the following system of equations:

mL+nK=p   (a)

m(1-\alpha)L-\alpha Kn=0   (b)

We can mutltiply the equation (a) by \alpha on both sides and add the result to equation (b) and we got:

Lm=\alpha p

And we can solve for L on this case:

L=\frac{\alpha p}{m}

And now in order to obtain K we can replace the result obtained for L into equations (a) or (b), replacing into equation (a)

m(\frac{\alpha P}{m})+nK=p

\alpha P +nK=P

nK=P(1-\alpha)

K=\frac{P(1-\alpha)}{n}

With this we have completed the proof.

5 0
3 years ago
(A+B)2=100<br> (A-B)2=16
galina1969 [7]

Answer:. ... .

Step-by-step explanation:

7 0
3 years ago
Other questions:
  • If |u| = 12, |v| = 8, and u · v = 48, then the angle between |u| and |v| is _____.
    10·1 answer
  • If Joe drives 186.83 miles on a business trip, and the reimbursement from his company is $13.08. At what rate is Joe's employer
    10·1 answer
  • *WILL GIVE BRIANLIEST*(07.03)
    15·1 answer
  • A summer camp has 400 ft of float line with which to rope off three adjacent rectangular areas of a lake for swimming? lessons,
    5·1 answer
  • If vector u = &lt;-3.5, -1.5&gt; and vector v = &lt;-1.25, 2.25&gt;, which graph shows the resulting vector for 2v − u?
    10·1 answer
  • How many hours is in 157 minutes
    6·2 answers
  • Square root of -6 times square root of -12 times square root of -5
    11·1 answer
  • What addition equations can make 16?
    5·2 answers
  • 500,000=_____x10<br><br> I'm confused on this​
    5·1 answer
  • Can some help 10 points and brainllest for the first answer
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!