Balanced:
1. <span>Na2O + H2O ---> 2NaOH
2. </span><span>K2O + H2O ---> 2KOH
3. </span><span>MgO + H2O ---> Mg(OH)2
4. </span><span>CaO + H2O ---> Ca(OH)2
5. </span><span>SO2 + H2O ⇄ H2SO3
6. </span>SO3 + H2O ---> H2SO4
All except by 2 were balanced.
<span>The righ answer is the option A. They are made up of two or more pure substances that are not chemically bonded. A classicall expample ot heterogeneous mixtures are sugar and salt. Sugar is a pure substance, salt is also a pure substance, when you mixe them you form mixture where salt is still salt and sugar is still sugar, that is what "they are not chemically bonded" means. So you can separate them by physical media. </span>
The answer is a change in internal energy causes work to be done and heat to flow into the system.
<u>Explanation:</u>
Boyle's law says, PV=RT
- Here P represents the pressure, V represents the volume and T represents the temperature. R is a constant. The volume of an ideal gas is inversely proportional to its pressure if the temperature is constant.
- When a bubble is present in deep water it has water pressure and atmospheric pressure. Then the Volume increases when water pressure raises which is proportional to the depth reduces.
- But we should not finalize the volume of the bubble will be four-time as great as at the top than the bottom. if the bottom of the lake is at four atmospheres, the temperature will not be equal to the top.
- If the bubble travels from the bottom to the top or vice-versa, it's going to lose or gain heat in a way that must be quite hard to measure.
When a liquid releases enough energy<span>. the </span>liquid<span> freezes, changing to a solid.
Hope this answer helps! feel free to ask any additional questions :)</span>
If you wanted to find a sample of fermium,which has an atomic mass of 100 I would look deep under the earth