Answer:
- 130.64°C.
Explanation:
- We can use the general law of ideal gas:<em> PV = nRT.</em>
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in K.
- If n and P are constant, and have two different values of V and T:
<em>V₁T₂ = V₂T₁</em>
<em></em>
V₁ = 634.0 L, T₁ = 21.0°C + 273 = 294.0 K.
V₂ = 307.0 L, T₂ = ??? K.
<em>∴ T₂ = V₂T₁/V₁ </em>= (307.0 L)(294.0 K)/(634.0 L) = <em>142.36 K.</em>
<em>∴ T₂(°C) = 142.36 K - 273 = - 130.64°C.</em>
Answer:
Explanation:
alright, dawg, lets get this bread. CHEMISTRY? OH YEAH I LOVE CHEMISTRY.
what is a mol? do you know who avogadro is? sounds like avocado. free shavocado. ok so you MUST REMEMBER THIS NUMBER PLEASE.
please remember this number and commit it to your memory: avogadros number

this is how much a mole is. you know how a pair is 2 and a dozen is 12? ok so a mole is
it is confusing at first but hopefully this helps you to understand.
now that we understand this..... lets perform this calculation with a calculator

notice i divide the question by the avogadros number to find out how many moles are in the number. ok but listen... it gets into a tough area here... because HOW ARE WE TO DIVIDE SUCH A HUMONGOUS NUMBER BY ANOTHER HUMONGOUS NUMBER?!?!?
its easy, its cake, just listen this is how you do it. only focus on the numbers NOT the 10 exponential ones. so just 3.90 and 6.02 ok? lets divide these two numbers 3.90 / 6.02 and we get 0.6478... how interesting... ok now lets deal with the exponents of 10. notice that we are DIVIDING these numbers so think of it as subtracting the exponents of ten..... 22 minus 23 equals -1
so we have 
now this negative 1 thing is annoying so lets just make it to the power of 0

and anything to the power of 0 just becomes 1.
0.06478
so this is our answer but keep in mind we need 3 sig figs. if we round then we get 0.0648
put this into scientific notation we get 
Answer:
<em>Dentro de las aplicaciones de la óxido-reducción se pueden encontrar:</em>
- <u><em>La obtención del aluminio a partir de la alúmina y la electrolisis.</em></u>
- <u><em>La obtención de cloro, hidrógeno e hidróxido de sodio a partir del cloruro de sodio y la electrolisis.</em></u>
- <u><em>La combustión interna de un motor a gasolina u otro combustible fósil.</em></u>
- <u><em>Las termoeléctricas, las cuales para generar energía realizan combustión de carbón.</em></u>
- <u><em>La galvanoplastia, donde para evitar la corrosión de un metal se recubre con otro metal más resistente, por ejemplo: el recubrimiento del acero con zinc.</em></u>
- <u><em>La pilas o baterías de las cuales se obtiene energía química</em></u><em>.</em>
Explanation:
<em>Como puedes ver en la respuesta, la óxido-reducción tiene diversas aplicaciones en la vida moderna, desde todos los tipos de combustión los cuales sirven para brindar energía o movilizarte, hasta todas las funciones que se le ha dado a la electrolisis y a la obtención de la energía por medios químicos, incluso se puede considerar una aplicación de la óxido-reducción la incorporación de antioxidantes en los alimentos, los cuales disminuyen la velocidad de descomposición de los mismos. </em>
The mass number plays an important role for elements and their isotopes. Mass number comes from the addition of protons and neutrons (their weight). Isotopes are the elements, but with a different number of neutrons. So in turn, by subtracting the number of protons (atomic number) from the mass, you can find the number of neutrons.