Half-life it tells you about the amount of time needed that half of the quantity of an isotope to disintegrate.
For carbon-14, assuming that the daughter isotope is a stable one and does not disintegrate further, you have:
<u>parent isotope</u> <u>daughter isotope</u> <u>years</u>
100% 0% 0
50% 50% 5,730
25% 75% 11,460
I don't understand what is (g).
Maybe the answer is 2H<span>(aq)S</span>₂<span>−2(aq) </span>⇒ <span>H</span>₂<span>S</span>₂.
Answer:
the work done on the gas is 4,988.7 J.
Explanation:
Given;
number of moles of the monoatomic gas, n = 4 moles
initial temperature of the gas, T₁ = 300 K
final temperature of the gas, T₂ = 400 K
The work done on the gas is calculated as;

For monoatomic ideal gas: 

Where;
R is ideal gas constant = 8.3145 J/K.mol

Therefore, the work done on the gas is 4,988.7 J.
<span>knowing that:
</span>760 mmHg = 1 atm = 101.3 KPa = 760 torr
Answer:
<span>C. 101.3 kPa
</span>
1) Conversion of an isotope one chemical element or an isotope into another chemical element is called as nuclear transmutation.
<span>
2) In a nuclear transmutation reactions</span> can be achieved either due to radioactive decay or due to nuclear reactions.
3) In this technique, it is possible to convert a stable element into radioactive atom by bombarding in with high speed particles. The initial stable nuclei is referred as parent nuclei, the fast moving particle is referred as projectile while new element which is formed is called as daughter element.
4) In the present reaction:
<span>1 1 H+ 1 0 n -> 2 1 H
1 1H is a parent nuclei which is bombarded with the fast moving projectile
(1 0 n) to generate a new daughter nuclei (2 1H). </span>