Answer:si
Explanation:hope I helped
Answer:
C. The bacteria have high genetic variability and high reproductive rates.
Answer:
True
Explanation:
Ice pellets are rain drops that have frozen <em><u>before</u></em> they hit the ground.
(They freeze while they're still in the air)
39
Reproductive cells are haploid (have 1/2 the chromosomes), whereas somatic/body cells are diploid (have the full set of chromosomes)
This makes sense if you think about it. Using the example from the question, every dog has 78 chromosomes. This includes two of each (there are two chromosome 1's, two chromosome 2's, etc. This is visible in the karyotype attached). One set of these chromosomes were inherited from the mother, and one set from the father. Each parent contributed 39 chromosomes (one chromosome 1, one chromosome 2, etc.). If the dog in the question were to have 78 chromosomes in its sperm cells, it would contribute two sets to its offspring. When combined with the chromosomes in the egg cell, the offspring would end up with extra chromosomes. Therefore, both the sperm and the egg cells will have 39 chromosomes, one of each. When combined, they will produce offspring with 78 chromosomes, the proper number.
Answer:
- In terrestrial environments: increasing CO2 levels cause an increased photosynthetic rate
- In aquatic environments: increasing CO2 levels cause an increase in water acidity
- In both terrestrial and aquatic environments: increasing CO2 levels lead to an overall increase in the average temperature (global warming)
Explanation:
In terrestrial ecosystems, rising carbon dioxide (CO2) levels increase the rate of photosynthesis (since CO2 is one of the reactants in photosynthesis), thereby also increasing plant growth. Moreover, in aquatic ecosystems, rising CO2 concentrations increase the levels of this gas dissolved on the surface of the oceans. This increases the acidity of the oceans, thereby modifying habitats and food web structures. The increasing acidity of the oceans also reduces the amounts of carbonate, which difficult for aquatic species (e.g., corals) to form their shells/skeletons. Finally, CO2 is a greenhouse gas that contributes to the increase in the average temperature by absorbing solar radiation that would otherwise have been reflected by the Earth's surface, and this increase in the temperature negatively affects life in both terrestrial and aquatic environments.