1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Jet001 [13]
3 years ago
12

The following number - 0.050437 - written to TWO significant figures would be

Physics
1 answer:
Sophie [7]3 years ago
7 0

Answer:

0.050000

Explanation:

your welcome :)

You might be interested in
85POINTS ASAP!!!!!!!!!!!!!!
alexgriva [62]
The andwer of tye question is 3O2
6 0
3 years ago
Read 2 more answers
Suppose a small planet is discovered that is 16 times as far from the Sun as the Earth's distance is from the Sun. Use Kepler's
mamaluj [8]

Answer:

23376 days

Explanation:

The problem can be solved using Kepler's third law of planetary motion which states that the square of the period T of a planet round the sun is directly proportional to the cube of its mean distance R from the sun.

T^2\alpha R^3\\T^2=kR^3.......................(1)

where k is a constant.

From equation (1) we can deduce that the ratio of the square of the period of a planet to the cube of its mean distance from the sun is a constant.

\frac{T^2}{R^3}=k.......................(2)

Let the orbital period of the earth be T_e and its mean distance of from the sun be R_e.

Also let the orbital period of the planet be T_p and its mean distance from the sun be R_p.

Equation (2) therefore implies the following;

\frac{T_e^2}{R_e^3}=\frac{T_p^2}{R_p^3}....................(3)

We make the period of the planet T_p the subject of formula as follows;

T_p^2=\frac{T_e^2R_p^3}{R_e^3}\\T_p=\sqrt{\frac{T_e^2R_p^3}{R_e^3}\\}................(4)

But recall that from the problem stated, the mean distance of the planet from the sun is 16 times that of the earth, so therefore

R_p=16R_e...............(5)

Substituting equation (5) into (4), we obtain the following;

T_p=\sqrt{\frac{T_e^2(16R_e)^3}{(R_e^3}\\}\\T_p=\sqrt{\frac{T_e^24096R_e^3}{R_e^3}\\}

R_e^3 cancels out and we are left with the following;

T_p=\sqrt{4096T_e^2}\\T_p=64T_e..............(6)

Recall that the orbital period of the earth is about 365.25 days, hence;

T_p=64*365.25\\T_p=23376days

4 0
3 years ago
With an increase in temperature, the viscosity of liquids will: . (a) decrease (b) increase . (c) no change
ICE Princess25 [194]

Answer:

(a) decrease

Explanation:

Viscosity is the resistance which occur to flow of the fluid.

More the inter molecular forces between particles of the liquid, more the viscosity of liquid.

<u>Effect of temperature on viscosity:-</u>

Viscosity decreases with the increase in the temperature as forces among the particles decrease on increasing temperature. The kinetic energy of the particles of the liquid increases causing to move in more random motions and thus weaker inter molecular forces and this offer less resistance to the flow.

<u>Hence, viscosity of the liquids decrease with the increasing temperature.</u>

3 0
3 years ago
GIVING BRAINLIEST FIVE STARS AND HEART!
alina1380 [7]

Answer:

A bicycle on the top of the hill has the highest potential energy, and when the bike goes down, it transfers to kinetic because it is moving

Explanation:

yeah

4 0
3 years ago
A mass is oscillating with amplitude A at the end of a spring.
Dmitry_Shevchenko [17]

A) x=\pm \frac{A}{2\sqrt{2}}

The total energy of the system is equal to the maximum elastic potential energy, that is achieved when the displacement is equal to the amplitude (x=A):

E=\frac{1}{2}kA^2 (1)

where k is the spring constant.

The total energy, which is conserved, at any other point of the motion is the sum of elastic potential energy and kinetic energy:

E=U+K=\frac{1}{2}kx^2+\frac{1}{2}mv^2 (2)

where x is the displacement, m the mass, and v the speed.

We want to know the displacement x at which the elastic potential energy is 1/3 of the kinetic energy:

U=\frac{1}{3}K

Using (2) we can rewrite this as

U=\frac{1}{3}(E-U)=\frac{1}{3}E-\frac{1}{3}U\\U=\frac{E}{4}

And using (1), we find

U=\frac{E}{4}=\frac{\frac{1}{2}kA^2}{4}=\frac{1}{8}kA^2

Substituting U=\frac{1}{2}kx^2 into the last equation, we find the value of x:

\frac{1}{2}kx^2=\frac{1}{8}kA^2\\x=\pm \frac{A}{2\sqrt{2}}

B) x=\pm \frac{3}{\sqrt{10}}A

In this case, the kinetic energy is 1/10 of the total energy:

K=\frac{1}{10}E

Since we have

K=E-U

we can write

E-U=\frac{1}{10}E\\U=\frac{9}{10}E

And so we find:

\frac{1}{2}kx^2 = \frac{9}{10}(\frac{1}{2}kA^2)=\frac{9}{20}kA^2\\x^2 = \frac{9}{10}A^2\\x=\pm \frac{3}{\sqrt{10}}A

3 0
3 years ago
Other questions:
  • Which is a chemical reaction? Select one: a. a peanut shell cracking open into two halves b. solid chocolate melting into liquid
    6·2 answers
  • The speed of an electromagnetic wave is equal to
    5·1 answer
  • How do scientists learn about the brain.
    15·2 answers
  • Dump Tower is 96 stories tall. A small, 1.2-kg object is dropped over the side of the roof of the tower and accelerates toward t
    13·1 answer
  • The relationship between voltage, E, current, I, and resistance, Z, is given by the equation E = IZ. If a circuit has a current
    5·2 answers
  • What are the three ways to lessen any risk?
    7·2 answers
  • 1.) What things signal the coming of spring?
    12·1 answer
  • Some runners have just started a race. They began at rest and are getting faster.What statement best describes the motion of the
    5·1 answer
  • A 10.0 kg gun applies a force of 250. N left on a 0.0200 kg bullet. What is the force on the gun?
    12·1 answer
  • What is convection?<br> what is radiation ?<br> what conduction?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!