1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gwar [14]
3 years ago
5

The acceleration due to gravity on the moon is 1.6 m/s2. What is the gravitational potential energy of a 1200-kg lander resting

on top of a 350-m hill?
Physics
2 answers:
Monica [59]3 years ago
8 0
Gravitational potential energy<span> is </span>energy<span> an object possesses because of its position in a </span>gravitational<span> field. </span><span>The equation for </span>gravitational potential energy<span> is GPE = mgh. 

GPE = 1200(1.6)(350) = 672000 J

Hope this answers the question. Have a nice day.</span>
Gala2k [10]3 years ago
8 0

the second box would be 6..........

You might be interested in
Đổi 20độC = ? độ F =? Độ k
san4es73 [151]

Answer:

IDC

Explanation:

I DON'T UNDERSTAND........

7 0
2 years ago
Which method is used to deliver heat in most central heating systems?
inessss [21]
The right  answer is B. hope this helps you :)
4 0
3 years ago
Read 2 more answers
A soft tennis ball is dropped onto a hard floor from a height of 1.50 m and rebounds to a height of 1.10 m. (a) Calculate its ve
Gemiola [76]

Answer:

(a)   v = 5.42m/s

(b)   vo = 4.64m/s

(c)   a = 2874.28m/s^2

(d)   Δy = 5.11*10^-3m

Explanation:

(a) The velocity of the ball before it hits the floor is given by:

v=\sqrt{2gh}        (1)

g: gravitational acceleration = 9.8m/s^2

h: height where the ball falls down = 1.50m

v=\sqrt{2(9.8m/s^2)(1.50m)}=5.42\frac{m}{s}

The speed of the ball is 5.42m/s

(b) To calculate the velocity of the ball, after it leaves the floor, you use the information of the maximum height reached by the ball after it leaves the floor.

You use the following formula:

h_{max}=\frac{v_o^2}{2g}       (2)

vo: velocity of the ball where it starts its motion upward

You solve for vo and replace the values of the parameters:

v_o=\sqrt{2gh_{max}}=\sqrt{2(9.8m/s^2)(1.10m)}=4.64\frac{m}{s}

The velocity of the ball is 4.64m/s

(c) The acceleration is given by:

a=\frac{\Delta v}{\Delta t}=\frac{v_o-v}{3.50*10^{-3}s}=\frac{4.64m/s-(-5.42m)/s}{3.50*10^{-3}s}=2874.285\frac{m}{s^2}

a=\frac{\Delta v}{\Delta t}=\frac{v_o-v}{3.50*10^{-3}s}=\frac{4.64m/s-5.42m/s}{3.50*10^{-3}s}=-222.85\frac{m}{s^2}

The acceleration of the ball is 2874.28/s^2

(d) The compression of the ball is:

\Deta y=\frac{v^2}{2(a)}=\frac{(5.42m/s)^2}{2(2874.28m/s^2)}=5.11*10^{-3}m

THe compression of the ball when it strikes the floor is 5.11*10^-3m

4 0
3 years ago
A 18.0-kg rock is sliding on a rough, horizontal surface at 7.10 m/s and eventually stops due to friction. the coefficient of ki
Bond [772]
A = .3*g = 2.94 m/s² 

<span>t = v/a = 9/2.94 = 3.061 sec </span>

<span>W = E/t = ½mv²/t = ½*40*9²/3.061 = 529.2 watts</span>
4 0
3 years ago
A bird is about 6.26.2 in.​ long, with a​ thin, dark bill and a​ wide, white wing stripe. If the bird can fly 9292 mi with the w
Trava [24]

Answer:

209 mph

Explanation:

V = Speed of bird in still air

v = Speed of wind = 44 mph

Consider the motion of the bird with the wind

D_{1} = distance traveled with the wind = 9292 mi

t_{1} = time taken to travel the distance with wind

Time taken to travel the distance with wind is given as

t_{1} = \frac{D_{1}}{V + v}

t_{1} = \frac{9292}{V + 44}                              eq-1

Consider the motion of the bird with the wind

D_{2} = distance traveled against the wind = 6060 mi

t_{2} = time taken to travel the distance against wind

Time taken to travel the distance against wind is given as

t_{2} = \frac{D_{2}}{V + v}

t_{2} = \frac{6060}{V - 44}                              eq-2

As per the question,

Time taken with the wind = Time taken against the wind

t_{1} = t_{2}

\frac{9292}{V + 44} = \frac{6060}{V - 44}

(9292) (V - 44) = (6060) (V + 44)

9292V - 408848 = 6060V + 266640

3232V = 675488

V = 209 mph

5 0
3 years ago
Other questions:
  • Which statement about cellulose is true?
    13·2 answers
  • A 3,600 kg sphere is located at a distance of 5.2 m from a 1,200 kg sphere.what is the gravitational force between the two spher
    14·1 answer
  • What holds the atoms together in a covalent bond
    10·2 answers
  • Two students are trying to measure how high a ball bounces when it is dropped from different heights. They dropped a ball from P
    14·1 answer
  • How much energy does it take to move a particle with a charge of +2 nC, from an initial position infinitely far from a second pa
    8·1 answer
  • A police radar gun uses X-band microwave radiation at a frequency of 12.2 GHz. Microwaves travel at the speed of light, or 3x108
    6·1 answer
  • This type of mutation occurs when one or more base pairs are added to the gene sequence.
    7·1 answer
  • WILL MARK BRAINLIEST PLEASE HELP AND SHOW ALL WORK
    13·1 answer
  • 1. A box contains 10 blue chips. 5 red chips, and 15 yellow chips. Find the odds of choosing the
    14·1 answer
  • What is the mass of the roller coaster?
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!