Answer:
The answer is
<h2>270 m</h2>
Explanation:
To find the distance when given the velocity and time we use the formula
<h3>distance = velocity × time</h3>
From the question
velocity of the ball = 18 m/s
time = 15 s
So the distance is
distance = 18 × 15
We have the final answer as
<h3>270 m</h3>
Hope this helps you
Answer:
125.83672 seconds
Explanation:
P = Power of the horse = 1 hp = 746 W (as it is not given we have assumed the horse has the power of 1 hp)
m = Mass of professor = 103 kg
g = Acceleration due to gravity = 9.8 m/s²
h = Height of professor = 93 m
Work done would be equal to the potential energy

Power is given by

The time taken by the horse to pull the professor is 125.83672 seconds
Friction is caused by the uneven surfaces of touching objects
Answer:
5 m/s2
Explanation:
The total acceleration of the circular motion is made of 2 components: centripetal acceleration and linear acceleration of 4 m/s2. They are perpendicular to each other.
The centripetal acceleration is the ratio of instant velocity squared and the radius of the circle

So the magnitude of the total acceleration is

Answer: Shorter
Explanation: Shadow is formed when an light source is obstructed by an opaque object. The closer the source, shorter is the length of the shadow. In fact, when the source is exactly overhead, no shadow of the object is formed.
June 21 marks the Summer solstice which means the Sun passes directly overhead Tropic of cancer (23.5° N) at noon. March 21 marks the equinox which means sun passes directly overhead equator (0°).
Shadow length of an object at 42° Northern latitude will be shorter on June 21 because the Sun will be closer to this latitude as compared to March 21.