Answer:
The time where the avergae speed equals the instaneous speed is T/2
Explanation:
The velocity of the car is:
v(t) = v0 + at
Where v0 is the initial speed and a is the constant acceleration.
Let's find the average speed. This is given integrating the velocity from 0 to T and dividing by T:

v_ave = v0+a(T/2)
We can esaily note that when <u><em>t=T/2</em></u><u><em> </em></u>
v(T/2)=v_ave
Now we want to know where the car should be, the osition of the car is:

Where x_A is the position of point A. Therefore, the car will be at:
<u><em>x(T/2) = x_A + v_0 (T/2) + (1/8)aT^2</em></u>
<span>FACTS:
|
|
It’s
that time of year again when the days are wet and cool.
The rainy
season is the best season.
Rain makes up part of Earth’s water cycle.
Water evaporates from streams, lakes, and oceans, then condensation
and
precipitation occur in the form of rain.
Precipitation in the form of
rain is better than snow.
Snow this time of year makes people gloomy.
Rain is a great boon to local farmers.
It helps their crops grow.
</span>OPINIONS:
|
<span>| It’s
that time of year again when the days are wet and cool.
The rainy
season is the best season.
Rain makes up part of Earth’s water cycle.
Water evaporates from streams, lakes, and oceans, then condensation
and
precipitation occur in the form of rain.
Precipitation in the form of
rain is better than snow.
Snow this time of year makes people gloomy.
Rain is a great boon to local farmers.
It helps their crops grow.</span>
Data:

n (Wave node)
V (Wave belly)
L (Wave length)
<span>The number of bells is equal to the number of the harmonic emitted by the string.
</span>

Wire 2 → 2º Harmonic → n = 2







Wire 1 → 1º Harmonic or Fundamental rope → n = 1



If, We have:
V = 42L
Soon:



Answer:
<span>The fundamental frequency of the string:
</span>
21 Hz
Answer:

Explanation:
The energy of a photon is given by:

where
h is the Planck constant
c is the speed of light
is the wavelength of the photon
In this problem, we have a microwave photon with wavelength

Substituting into the equation, we find its energy:

given that snow is projected at an angle of 40 degree
It range is given as a = 19 ft

now we can use the formula of horizontal range





<u>so its initial speed must be 7.6 m/s</u>