<span>Atmospheric refraction is the deviation of light or other electromagnetic wave from a straight line as it passes through the atmosphere due to the variation in air density as a function of height. ... The term also applies to the refraction of sound.</span>
The picture shows “regular reflection”
Answer:
The focal length of eye piece is 6.52 cm.
Explanation:
Given that,
Angular Magnification of the microscope M = -46
the distance between the lens in microscope L= 16 cm
The focal length of objective f₀ = 1.5 cm
Normal near point N = 25 cm
Have to find focal length of eye piece f ₙ =?
The angular magnification is given by
M ≈ - (L-fₙ)N/f₀fₙ
Rearranging for fₙ
fₙ =L(1 - Mf₀/N)⁺¹
=18/2.76
fₙ = 6.52 cm
The focal length of eye piece is 6.52 cm.
Answer:
Magnetic field, 
Explanation:
It is given that,
Number of turns, N = 320
Radius of the coil, r = 6 cm = 0.06 m
The distance from the center of one coil to the electron beam is 3 cm, x = 3 cm = 0.03 m
Current flowing through the coils, I = 0.5 A
We need to find the magnitude of the magnetic field at a location on the axis of the coils, midway between the coils. The magnetic field midway between the coils is given by :


B = 0.00239 T
or

So, the magnitude of the magnetic field at a location on the axis of the coils, midway between the coils is
. Hence, this is the required solution.
Gravity is an attractive force that works to pull objects together. If 2 objects are close the gravitational pull will be stronger
Mass and distance determine gravity. The farther two things are away from each other, the weaker the gravitational forces are, the less mass an object has the less gravitational force it exerts