The angle of reflection is equal to angle of incidence so the angle of reflection is also 32°.
Answer:
0.5 m/s north
Explanation:
Take east to be +x, west to be -x, north to be +y, and south to be -y.
His displacement in the x direction is:
x = 20 m − 20 m = 0 m
His displacement in the y direction is:
y = 10 m
His total displacement is therefore 10 m north.
His velocity is equal to displacement divided by time.
v = 10 m north / 20 s
v = 0.5 m/s north
Answer:
4units
Explanation:
To calculate the total distance the beam will travel along this path, you will use the formula for calculating the distance between two coordinates expressed as;
D = √(x2-x1)²+(y2-y1)²
Given the coordinate points
(3,5) and (7,5)
Substitute
D = √(7-3)²+(5-5)²
D = √(7-3)²+0²
D = √4²
D = √16
D = 4
Hence the total distance the beam will travel along this path is 4units
Answer:
The lens to be used for the objective is lens A
Explanation:
The objective of a compound microscope
The focal length of the lens used for the objective = 1/(magnification obtained)
The focal length of most modern is equal to the tube length
The range of sizes for the focal length of a microscope is between 2 mm and 40 mm
Therefore, the appropriate lens to be used for the objective of the compound is lens A that has a focal length of 0.50 cm = 5 mm
Answer:
F = 326.7 N
Explanation:
given data
mass m = 200 kg
distance d = 2 m
length L = 12 m
solution
we know force exerted by the weight of the rock that is
W = m × g ..............1
W = 200 × 9.8
W = 1960 N
and
equilibrium the sum of the moment about that is
∑Mf = F(cos∅) L - W (cos∅) d = 0
here ∅ is very small so cos∅ L = L and cos∅ d = D
so F × L - W × d = 0 .................2
put here value
F × 12 - 1960 × 2 = 0
solve it we get
F = 326.7 N