Answer:
a) 9.72 mm
b) 4.86 mm
Explanation:
wave length of light λ is 580 nm = 580 \times 10⁻⁹ m
Width of slit d = 0.215\times 10⁻³ m
Distance of screen D = 1.8 m.
Width of one fringe = 
Putting the values we get fringe width
= 
=4.86 mm.
a) Width of central maxima = 2 times width of one fringe
= 2 times 4.86
=9.72 mm
b) width of each fringe except central fringe is same , no matter what the order is.Only brightness changes .
So width of either of the two first order bright fringe will be same and it will be
= 4.86 mm.
The gas would also decrease in size since the container lost gas to decrease the size of the container.
Answer:
the moon lacks a sizeable iron core
Explanation:
The force required to pull one of the microscope sliding at a constant speed of 0.28 m/s relative to the other is zero.
<h3>
Force required to pull one end at a constant speed</h3>
The force required to pull one of the microscope sliding at a constant speed of 0.28 m/s relative to the other is determined by applying Newton's second law of motion as shown below;
F = ma
where;
- m is mass
- a is acceleration
At a constant speed, the acceleration of the object will be zero.
F = m x 0
F = 0
Thus, the force required to pull one of the microscope sliding at a constant speed of 0.28 m/s relative to the other is zero.
Learn more about constant speed here: brainly.com/question/2681210
Kinetic energy = (1/2) (mass) (speed)²
= (1/2) (1.4 kg) (22.5 m/s)²
= (0.7 kg) (506.25 m²/s² )
= 354.375 kg-m²/s² = 354.375 joules .
This is just the kinetic energy associated with a 1.4-kg glob of
mass sailing through space at 22.5 m/s. In the case of a frisbee,
it's also spinning, and there's some additional kinetic energy stored
in the spin.