<u>Answer
</u>
A. 1 and 2
<u>Explanation
</u>
At point 1 we have the highest potential energy and the kinetic energy is zero.
At 2 the potential energy is minimum and the kinetic energy is maximum.
The law of conservation of energy says that energy cannot be created nor destroyed. So, the change in P.E = Change in K.E.
P.E = height × gravity × mass. The height referred here is the perpendicular height. Gravity and mass are constant in this case.
From the diagram it can be seen clearly that the vertical height from 2 to 1 is much greater than from 4 to 3.
This shows that the change in P.E is greater between 1 and 2 and so is kinetic energy.
<span>Newton's Third Law of Action-Reaction is that for each and every action that happens, there is an equal and opposite reaction to it. In the scenario of a roller coaster, this is when you push down on the seat of the roller coaster as it flies along and the seat pushes back against you.</span>
Answer:
3,150,000N
Explanation:
According to Newton's second law;
F = mass * acceleration
Given
Mass = 45000kg
acceleration = 70m/s^2
Substitute
F = 45000 * 70
F = 3,150,000N
Hence the force required to be produced by the rocket engines is 3,150,000N
Maybe the water wasnt stable enough and probably couldnt read the water level correctly