Answer:
a
e(k) = \frac{2a}{c} * sin (\frac{k*a}{2} )
b
G_{v} = \frac{d e(k ) }{dk } = \frac{a^2}{c} * cos (\frac{k* a}{2} )
Explanation:
From the question we are told that
The velocity of transverse waves in a crystal of atomic separation is

Generally the dispersion relation is mathematically represented as

=> 
=> 
=> 
Generally the group velocity is mathematically represented as

Answer:
Informal education is important because it can help individual to learn how to react and control situations.
It help individual to improve on its existing knowledge, new skills or ideas. This kind of education can happen any where and it can add values to the learner.
Explanation:
Informal education is a type of education that is learned from different life experiences, happenings outside a structured curriculum.
Informal education is important because it can help individual to learn how to react and control situations.
It help individual to improve on its existing knowledge, new skills or ideas. This kind of education can happen any where and it can add values to the learner.
Answer:
3.True. The magnitude of momentum is the same
Explanation:
Let's propose the solution of the problem
The initial moment is
p₀ = m v
The final moment
= m (-v)
p₀ = -
Now we can review the claims
1. False. We see that the moment module is the same, but its direction changes
2. False. The impulse is a vector
3.True. The magnitude of momentum is the same