1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alexus [3.1K]
3 years ago
7

Newton's second law of motion describes the relationship of force and mass

Physics
1 answer:
frez [133]3 years ago
8 0

Explanation:

D option is accelraetion

You might be interested in
Several glands add fluids to the sperm to form semen as it passes through the vas deferens. true or false?
xenn [34]
The answer is true. It tells me I have to have 20 characters.
7 0
3 years ago
Read 2 more answers
ou are sitting in your car at rest at a traffic light with a bicyclist at rest next to you in the adjoining bicycle lane. As soo
madam [21]

Till the time car is just adjacent to the bicycle we can say

distance moved by cycle = distance moved by car

Time taken by car to accelerate from rest

t = \frac{v_f - v_i}{a}

t = \frac{49 - 0}{7} = 7 s

Time taken by cycle to accelerate

t = \frac{23 - 0}{15} = 1.53 s

now the distance moved by cycle in time "t"

d = \frac{23 + 0}{2}*1.53 + 23(t - 1.53)

distance moved by car in same time

d = \frac{7t + 0}{2}(t)

now make them equal

3.5t^2 = 17.595 - 35.19 + 23t

3.5 t^2 - 23t + 17.595 = 0

t = 5.68 s

so cycle will move ahead of car for t = 5.68 s

8 0
3 years ago
Read 2 more answers
How does a magnet work?
Alona [7]
All magnets have north and south poles. Opposite poles are attracted to each other, while the same poles repel each other. When you rub a piece of iron along a magnet, the north-seeking poles of the atoms in the iron line up in the same direction. The force generated by the aligned atoms creates a magnetic field.
7 0
3 years ago
Mars has two moons, Phobos and Deimos. Phobos orbits Mars at a distance of 9380 km from Mars's center, while Deimos orbits at 23
Sloan [31]

Answer:

The ratio is   \frac{T_1}{T_2}  = 3.965

Explanation:

From the question we are told that

   The  radius of Phobos orbit is  R_2 =  9380 km

    The radius  of Deimos orbit is  R_1  =  23500 \  km

Generally from Kepler's third law

    T^2 =  \frac{ 4 *  \pi^2 *  R^3}{G * M  }

Here M is the mass of Mars which is constant

        G is the gravitational  constant

So we see that \frac{ 4 *  \pi^2  }{G * M  } =  constant

   

    T^2 = R^3   *  constant      

=>  [\frac{T_1}{T_2} ]^2 =  [\frac{R_1}{R_2} ]^3

Here T_1 is the period of Deimos

and  T_1 is the period of  Phobos

So

      [\frac{T_1}{T_2} ] =  [\frac{R_1}{R_2} ]^{\frac{3}{2}}

=>    \frac{T_1}{T_2}  =  [\frac{23500 }{9380} ]^{\frac{3}{2}}]

=>    \frac{T_1}{T_2}  = 3.965

   

8 0
4 years ago
A soccer ball is kicked and left
Vedmedyk [2.9K]

Answer:

Explanation:

Considering that this is parabolic motion, we know that the time the ball is in the air begins the instant it leaves the ground, reaches up to its max height, and then begins falling until it reaches the ground. Duh, right? Some important things happen during this trip. There are a few things we need to know in order to even begin the problem. Parabolic motion has x and y coordinates because it is 2-dimmensional; the acceleration in the x dimension is not the same as the acceleration in the y dimension; the velocity of an object at its max height is always 0; the time it takes to reach its max height (where the max height is half the distance the object travels) is half the time it takes to make the whole trip. Yikes. That's a lot to know and much to remember! Don't you just LOVE physics!?

For a. the hang time is the time the ball was in the air. Some of that stuff we talked about above is pertinent to solving this problem. We know that the velocity of the ball is 0 at its max height, and we also know that if we find the time it takes to reach its max height, we can double that number to find how long it was in the air for the whole trip. Use the one-dimensional equation

v=v_0+at to find out how long it took to reach the max height. Even though we don't yet know the max height, we DO know that the velocity at that point is 0. BUT before we do that, since we are working in the y-dimension only, it would behoove us (benefit us) to find the velocity particular to this dimension. We are going to answer c. first, then backtrack.

c. wants the initial vertical velocity. That is found in the magnitude of the "blanket" or generic velocity times the sin of the angle, namely:

V_y=25sin(45) so

V_y= 18 m/s Now we can use that as the initial upwards velocity in part a:

v=v_0+at and filling in:

0 = 18 + (-9.8)t and

-18 = -9.8t so

t = 1.8 seconds. But remember, this is only half the time it was in the air. The whole trip, then, takes 2(1.8) which is

t = 3.6 seconds

That's a and c. Now for b:

b. asks for the x component of the velocity:

V_x=Vcos\theta which works out to be the same as the vertical velocity, since the sin and cos of 45 degrees is the same:

V_x=25cos45 and

V_x= 18 m/s

Onto d:

d. wants the max height. Remember, it took 1.8 seconds to get to the max height, so using yet another one-dimensional equation:

Δx = v₀t + \frac{1}{2}at^2 where Δx is the displacement, v₀ is the initial upwards velocity, a is the pull of gravity, and t is the time it takes to reach that max height (Δx, our unknown). Filling in:

Δx = 18(1.8)+\frac{1}{2}(-9.8)(1.8)^2 and if you do the rounding correctly, you'll end up with this:

Δx = 32 - 16 so

the max height, Δx, is 16 meters.

e. wants the range. That translates to the distance the ball traveled. This is found in a glorified version of d = rt, where d is displacement, r is velocity, and t is...well, time (that doesn't change):

Δx = vt so

Δx = 18(3.6) remember that the ball was in the air for a total of 3.6 seconds, so

Δx = 65 meters.

Phew!!!!! That's a lot! I suggest you learn your physics or this will make you insane by the end of the course!

6 0
3 years ago
Other questions:
  • PLSSSS help meeeeee lol
    8·1 answer
  • If Jupiter has a composition similar to the sun, why is it not a star?
    15·1 answer
  • Mac and Tosh are arguing in the cafeteria. Mac says that if he flings the Jell-O with a greater speed it will have a greater ine
    13·1 answer
  • A machine carries a 100kg cargo to a boat at a rate of 10m/s2. The distance between the ground to the boat is 50ft. If the machi
    6·1 answer
  • Swinging a tennis racket against a ball is an example of a third class lever. Please select the best answer from the choices pro
    13·2 answers
  • An astronaut is taking a space walk near the shuttle when her safety tether breaks. what should the astronaut do to get back to
    10·1 answer
  • If you carry out an experiment measuring the weight and mass of objects in one particular location on the earth, what relation w
    12·2 answers
  • A soccer ball is kicked from the ground with a velocity of 30m/s directed at an angle of 45 degrees with respect to horizontal.
    10·1 answer
  • Is anyone online??just asking ​
    8·2 answers
  • How is power defined? Question 4 options: the quantity of work accomplished the direction of the work the total distance an obje
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!