Electromagnetic radiation are represented in waves. Each type of wave has a certain shape and length. The distance between two peaks in a wave is called the wavelength. This value is equal to the speed of light divided by the frequency.
Wavelength = c/f
Wavelength = 3x10^8 / <span>5.42x10^15
</span><span>Wavelength = 5.54 x 10^-8 m = 55.35 nm</span>
You'll hear that force called different things in different places. It
may be called "electromotive force", "EMF", "potential difference",
or "voltage".
It's just a matter of somehow causing the two ends of the wire
to have different electrical potential. When that happens, the
free electrons in the copper suddenly have a burning desire to
travel ... away from the end that's more negative, toward the end
that's more positive, and THAT's an "electric current".
A because of the resistors are four in this options first option is multiplied by 4
<span>So we want to know why is there a difference between the force of gravity on the Moon and the force of gravity of the Earth. So the gravitational force between two objects depends on the masses of both objects. That can be seen from Newtons universal law of gravity. F=G*m1*m2*(1/r^2). So lets say we are holding an object of mass m=1kg on a height r=1m on the Moon and we are holding the same object on the Earth also on the same height of r=1m. The Gravitational force on the Earth will be Fg=G*M*m*(r^2) where M is the mass of the Earth. The force between the moon and that object will be Fg=G*n*m*(r^2), where n is the mass of the moon. Since mass of the Moon is much smaller than mass of the Earth, The gravitational force between the Moon and that body will be almost 6 times smaller than the gravitational force between the Earth and that body. So the correct answer is B. </span>
1. Resonance. Mechanical waves act on or through a medium, these waves can often have frequencies that are synchronized in a way that makes them act on the matter in the medium more "aggressively."