Answer:
Part A the answer is the dielectric constant.
Part B Mica- mylar- paper- quartz
Explanation:
The capacity of a capacitor is given by
C = ε ε₀ A / d
Where the dielectric constant (ε) is the value of the material between the plates of the capacitor, we see that as if value increases the capacity also increases.
Another magnitude that we must take into account that the maximum working voltage, the greater the safer is the capacitor
the flexibility of the material must also be taken into account
Part A the answer is the dielectric constant.
Pate B order the materials from best to worst
Mica. The best ever
Mylar Flexible
Paper Low capacity, low working voltage, flexible
Quartz high dielectric, but brittle
Examine the water molecules in the animation. After the wave has passed which of the following is true?
Answer:
67.9 kg*m/s
Explanation:
Pi = 38 kgm/s
F = 88.3N and ∆t = 0.338s
Final momentum Pf = Pi + F∆t = 38 + (88.3)(0.338) = 38 + 29.8454
=) Pf = 67.8454 kgm/s = 67.85kg*m/s
Your answer is 67.9kg*m/s with three significant figures
hope this helps your troubles!
Explanation:
Given that,
Charge 1, 
Charge 2, 
The distance between charges, r = 1.99 m
To find,
The electrostatic force and its nature
Solution,
(a) The electric force between two charges is given by :



(b) As the magnitude of both charges is positive, then the force between charges will be repulsive.
Therefore, this is the required solution.
If the acceleration is constant, and the starting velocity is zero, the relationship between the acceleration of a falling body (a), the time it takes to fall (t), and instantaneous velocity when it hits the ground (v) is:
the general equation of acceleration is:
vf = vi + at
assuming the initial velocity (vi) is zero, the equation becomes:
vf = at
v = at