Answer:
And the same can be said of a pendulum vibrating about a fixed position or of a guitar ... along the time axis, it is possible to determine the time for one complete cycle. ... It takes 2.3 seconds to complete the first full cycle of vibration. ... Since the standard metric unit of time is the second, frequency has units of cycles/second.
Explanation:
Plz mark brainliest im only 12. and i have never been marked brainliest.
I think you forgot to give the options along with the question. I am answering the question based on my knowledge and research. The criteria responsible for deciding whether a heterogeneous mixture is a colloid or a suspension is whether the <span>particles remain suspended for an extended period of time. I hope it helps you.</span>
Answer:
d. This statement is false. She and the Space Station share the same orbit and will stay together unless they are pushed apart.
Explanation:
In astronomy, orbit is simply a path of an object around another object in a space. That is, orbit is a path of a body that revolves around a gravitating center of mass. Examples of an orbit is are satellite around a planet, orbit around a center of galaxy, planet around the sun, and among others.
On the other hand, space station refers to a spacecraft that can support a group of human for long time in the orbit. Another names for space stations are orbital space station and orbital station.
Therefore, an astronaut goes on a space walk outside the Space Station shares the same orbit with the space station and they will stay together unless they are pushed apart.
Answer:
b. negative
Explanation:
neutrons have a negative charge and protons have a proton has a positive charge
Answer:
The upper limit on the flow rate = 39.46 ft³/hr
Explanation:
Using Ergun Equation to calculate the pressure drop across packed bed;
we have:

where;
L = length of the bed
= viscosity
U = superficial velocity
= void fraction
dp = equivalent spherical diameter of bed material (m)
= liquid density (kg/m³)
However, since U ∝ Q and all parameters are constant ; we can write our equation to be :
ΔP = AQ + BQ²
where;
ΔP = pressure drop
Q = flow rate
Given that:
9.6 = A12 + B12²
Then
12A + 144B = 9.6 -------------- equation (1)
24A + 576B = 24.1 --------------- equation (2)
Using elimination methos; from equation (1); we first multiply it by 2 and then subtract it from equation 2 afterwards ; So
288 B = 4.9
B = 0.017014
From equation (1)
12A + 144B = 9.6
12A + 144(0.017014) = 9.6
12 A = 9.6 - 144(0.017014)

A = 0.5958
Thus;
ΔP = AQ + BQ²
Given that ΔP = 50 psi
Then
50 = 0.5958 Q + 0.017014 Q²
Dividing by the smallest value and then rearranging to a form of quadratic equation; we have;
Q² + 35.02Q - 2938.8 = 0
Solving the quadratic equation and taking consideration of the positive value for the upper limit of the flow rate ;
Q = 39.46 ft³/hr