The answer to the selected problem is: that is a linear equation.
Answer:
$1.5
Step-by-step explanation:
if each dozen cost $18, we need to divide.......18/12........because 12 is a dozen.
18/12 = 1.5
Answer:

Step-by-step explanation:
<h3>Input Data :</h3>
Length = 3.6 cm
<h3>Objective :</h3>
Find the volume of Hemisphere.
<h3>Formula :</h3>
Volume =

<h3>Solutions</h3>
volume =
<h3>

</h3>



Answer:
The sampling distribution of the sample proportion of adults who have credit card debts of more than $2000 is approximately normally distributed with mean
and standard deviation 
Step-by-step explanation:
Central Limit Theorem
The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean
and standard deviation
, the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean
and standard deviation
.
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean
and standard deviation 
In this question:

Then

By the Central Limit Theorem:
The sampling distribution of the sample proportion of adults who have credit card debts of more than $2000 is approximately normally distributed with mean
and standard deviation 
We have been given that the ages of students in a school are normally distributed with a mean of 15 years and a standard deviation of 2 years.
We are asked to find the percentage of students that are between 14 and 18 years old.
First of all, we will find z-score corresponding to 14 and 18 using z-score formula.




Similarly, we will find the z-score corresponding to 18.



Now we will find the probability of getting a z-score between
and
that is
.

Using normal distribution table, we will get:


Let us convert
into percentage.

Therefore, approximately
of the students are between 14 and 18 years old.