The smallest prime number of p for which p^3 + 4p^2 + 4p has exactly 30 positive divisors is 43.
<h3>What is the smallest prime number of p for which p must have exactly 30 positive divisors?</h3>
The smallest number of p in the polynomial equation p^3 + 4p^2 + 4p for which p must have exactly 30 divisors can be determined by factoring the polynomial expression, then equating it to the value of 30.
i.e.
By factorization, we have:
Now, to get exactly 30 divisor.
- (p+2)² requires to give us 15 factors.
Therefore, we can have an equation p + 2 = p₁ × p₂²
where:
- p₁ and p₂ relate to different values of odd prime numbers.
So, for the least values of p + 2, Let us assume that:
p + 2 = 5 × 3²
p + 2 = 5 × 9
p + 2 = 45
p = 45 - 2
p = 43
Therefore, we can conclude that the smallest prime number p such that
p^3 + 4p^2 + 4p has exactly 30 positive divisors is 43.
Learn more about prime numbers here:
brainly.com/question/145452
#SPJ1
Answer:
9 pack
Step-by-step explanation:
11.49/4=$2.87 per ball
16.70/6=$2.78 per ball
22.99/9=$2.55 per ball
Answer: 24
Step-by-step explanation:
Take the factorial of that number.
4! = 4*3*2*1=24
Answer:
(4a+7)(4a-7)
Step-by-step explanation:
Answer:
There are three main types of congruence transformations: reflections (flips), rotations (turns), and translations (slides). These congruence transformations can be used to obtain congruent shapes or to verify that two shapes are congruent